naiveproxy/base/task/sequence_manager/intrusive_heap.h

230 lines
6.5 KiB
C
Raw Normal View History

2018-08-15 01:19:20 +03:00
// Copyright 2018 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#ifndef BASE_TASK_SEQUENCE_MANAGER_INTRUSIVE_HEAP_H_
#define BASE_TASK_SEQUENCE_MANAGER_INTRUSIVE_HEAP_H_
#include <algorithm>
#include <vector>
#include "base/logging.h"
namespace base {
namespace sequence_manager {
namespace internal {
template <typename T>
class IntrusiveHeap;
// Intended as an opaque wrapper around |index_|.
class HeapHandle {
public:
HeapHandle() : index_(0u) {}
bool IsValid() const { return index_ != 0u; }
private:
template <typename T>
friend class IntrusiveHeap;
HeapHandle(size_t index) : index_(index) {}
size_t index_;
};
// A standard min-heap with the following assumptions:
// 1. T has operator <=
// 2. T has method void SetHeapHandle(HeapHandle handle)
// 3. T has method void ClearHeapHandle()
// 4. T is moveable
// 5. T is default constructible
// 6. The heap size never gets terribly big so reclaiming memory on pop/erase
// isn't a priority.
//
// The reason IntrusiveHeap exists is to provide similar performance to
// std::priority_queue while allowing removal of arbitrary elements.
template <typename T>
class IntrusiveHeap {
public:
IntrusiveHeap() : nodes_(kMinimumHeapSize), size_(0) {}
~IntrusiveHeap() {
for (size_t i = 1; i <= size_; i++) {
MakeHole(i);
}
}
bool empty() const { return size_ == 0; }
size_t size() const { return size_; }
void Clear() {
for (size_t i = 1; i <= size_; i++) {
MakeHole(i);
}
nodes_.resize(kMinimumHeapSize);
size_ = 0;
}
const T& Min() const {
DCHECK_GE(size_, 1u);
return nodes_[1];
}
void Pop() {
DCHECK_GE(size_, 1u);
MakeHole(1u);
size_t top_index = size_--;
if (!empty())
MoveHoleDownAndFillWithLeafElement(1u, std::move(nodes_[top_index]));
}
void insert(T&& element) {
size_++;
if (size_ >= nodes_.size())
nodes_.resize(nodes_.size() * 2);
// Notionally we have a hole in the tree at index |size_|, move this up
// to find the right insertion point.
MoveHoleUpAndFillWithElement(size_, std::move(element));
}
void erase(HeapHandle handle) {
DCHECK_GT(handle.index_, 0u);
DCHECK_LE(handle.index_, size_);
MakeHole(handle.index_);
size_t top_index = size_--;
if (empty() || top_index == handle.index_)
return;
if (nodes_[handle.index_] <= nodes_[top_index]) {
MoveHoleDownAndFillWithLeafElement(handle.index_,
std::move(nodes_[top_index]));
} else {
MoveHoleUpAndFillWithElement(handle.index_, std::move(nodes_[top_index]));
}
}
void ReplaceMin(T&& element) {
// Note |element| might not be a leaf node so we can't use
// MoveHoleDownAndFillWithLeafElement.
MoveHoleDownAndFillWithElement(1u, std::move(element));
}
void ChangeKey(HeapHandle handle, T&& element) {
if (nodes_[handle.index_] <= element) {
MoveHoleDownAndFillWithLeafElement(handle.index_, std::move(element));
} else {
MoveHoleUpAndFillWithElement(handle.index_, std::move(element));
}
}
// Caution mutating the heap invalidates the iterators.
const T* begin() const { return &nodes_[1u]; }
const T* end() const { return begin() + size_; }
private:
enum {
// The majority of sets in the scheduler have 0-3 items in them (a few will
// have perhaps up to 100), so this means we usually only have to allocate
// memory once.
kMinimumHeapSize = 4u
};
friend class IntrusiveHeapTest;
size_t MoveHole(size_t new_hole_pos, size_t old_hole_pos) {
DCHECK_GT(new_hole_pos, 0u);
DCHECK_LE(new_hole_pos, size_);
DCHECK_GT(new_hole_pos, 0u);
DCHECK_LE(new_hole_pos, size_);
DCHECK_NE(old_hole_pos, new_hole_pos);
nodes_[old_hole_pos] = std::move(nodes_[new_hole_pos]);
nodes_[old_hole_pos].SetHeapHandle(HeapHandle(old_hole_pos));
return new_hole_pos;
}
// Notionally creates a hole in the tree at |index|.
void MakeHole(size_t index) {
DCHECK_GT(index, 0u);
DCHECK_LE(index, size_);
nodes_[index].ClearHeapHandle();
}
void FillHole(size_t hole, T&& element) {
DCHECK_GT(hole, 0u);
DCHECK_LE(hole, size_);
nodes_[hole] = std::move(element);
nodes_[hole].SetHeapHandle(HeapHandle(hole));
DCHECK(std::is_heap(begin(), end(), CompareNodes));
}
// is_heap requires a strict comparator.
static bool CompareNodes(const T& a, const T& b) { return !(a <= b); }
// Moves the |hole| up the tree and when the right position has been found
// |element| is moved in.
void MoveHoleUpAndFillWithElement(size_t hole, T&& element) {
DCHECK_GT(hole, 0u);
DCHECK_LE(hole, size_);
while (hole >= 2u) {
size_t parent_pos = hole / 2;
if (nodes_[parent_pos] <= element)
break;
hole = MoveHole(parent_pos, hole);
}
FillHole(hole, std::move(element));
}
// Moves the |hole| down the tree and when the right position has been found
// |element| is moved in.
void MoveHoleDownAndFillWithElement(size_t hole, T&& element) {
DCHECK_GT(hole, 0u);
DCHECK_LE(hole, size_);
size_t child_pos = hole * 2;
while (child_pos < size_) {
if (nodes_[child_pos + 1] <= nodes_[child_pos])
child_pos++;
if (element <= nodes_[child_pos])
break;
hole = MoveHole(child_pos, hole);
child_pos *= 2;
}
if (child_pos == size_ && !(element <= nodes_[child_pos]))
hole = MoveHole(child_pos, hole);
FillHole(hole, std::move(element));
}
// Moves the |hole| down the tree and when the right position has been found
// |leaf_element| is moved in. Faster than MoveHoleDownAndFillWithElement
// (it does one key comparison per level instead of two) but only valid for
// leaf elements (i.e. one of the max values).
void MoveHoleDownAndFillWithLeafElement(size_t hole, T&& leaf_element) {
DCHECK_GT(hole, 0u);
DCHECK_LE(hole, size_);
size_t child_pos = hole * 2;
while (child_pos < size_) {
size_t second_child = child_pos + 1;
if (nodes_[second_child] <= nodes_[child_pos])
child_pos = second_child;
hole = MoveHole(child_pos, hole);
child_pos *= 2;
}
if (child_pos == size_)
hole = MoveHole(child_pos, hole);
MoveHoleUpAndFillWithElement(hole, std::move(leaf_element));
}
std::vector<T> nodes_; // NOTE we use 1-based indexing
size_t size_;
};
} // namespace internal
} // namespace sequence_manager
} // namespace base
#endif // BASE_TASK_SEQUENCE_MANAGER_INTRUSIVE_HEAP_H_