mirror of
https://github.com/klzgrad/naiveproxy.git
synced 2024-11-28 08:16:09 +03:00
281 lines
11 KiB
C++
281 lines
11 KiB
C++
|
// Copyright (c) 2009, Google Inc.
|
||
|
// All rights reserved.
|
||
|
//
|
||
|
// Redistribution and use in source and binary forms, with or without
|
||
|
// modification, are permitted provided that the following conditions are
|
||
|
// met:
|
||
|
//
|
||
|
// * Redistributions of source code must retain the above copyright
|
||
|
// notice, this list of conditions and the following disclaimer.
|
||
|
// * Redistributions in binary form must reproduce the above
|
||
|
// copyright notice, this list of conditions and the following disclaimer
|
||
|
// in the documentation and/or other materials provided with the
|
||
|
// distribution.
|
||
|
// * Neither the name of Google Inc. nor the names of its
|
||
|
// contributors may be used to endorse or promote products derived from
|
||
|
// this software without specific prior written permission.
|
||
|
//
|
||
|
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
||
|
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
||
|
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
|
||
|
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
|
||
|
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
|
||
|
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
|
||
|
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
||
|
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
||
|
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
||
|
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
||
|
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
||
|
|
||
|
// ---
|
||
|
// Author: Craig Silverstein
|
||
|
//
|
||
|
// This forks out to pprof to do the actual symbolizing. We might
|
||
|
// be better off writing our own in C++.
|
||
|
|
||
|
#include "config.h"
|
||
|
#include "symbolize.h"
|
||
|
#include <stdlib.h>
|
||
|
#ifdef HAVE_UNISTD_H
|
||
|
#include <unistd.h> // for write()
|
||
|
#endif
|
||
|
#ifdef HAVE_SYS_SOCKET_H
|
||
|
#include <sys/socket.h> // for socketpair() -- needed by Symbolize
|
||
|
#endif
|
||
|
#ifdef HAVE_SYS_WAIT_H
|
||
|
#include <sys/wait.h> // for wait() -- needed by Symbolize
|
||
|
#endif
|
||
|
#ifdef HAVE_POLL_H
|
||
|
#include <poll.h>
|
||
|
#endif
|
||
|
#ifdef __MACH__
|
||
|
#include <mach-o/dyld.h> // for GetProgramInvocationName()
|
||
|
#include <limits.h> // for PATH_MAX
|
||
|
#endif
|
||
|
#if defined(__CYGWIN__) || defined(__CYGWIN32__)
|
||
|
#include <io.h> // for get_osfhandle()
|
||
|
#endif
|
||
|
#include <string>
|
||
|
#include "base/commandlineflags.h"
|
||
|
#include "base/logging.h"
|
||
|
#include "base/sysinfo.h"
|
||
|
|
||
|
using std::string;
|
||
|
using tcmalloc::DumpProcSelfMaps; // from sysinfo.h
|
||
|
|
||
|
|
||
|
DEFINE_string(symbolize_pprof,
|
||
|
EnvToString("PPROF_PATH", "pprof"),
|
||
|
"Path to pprof to call for reporting function names.");
|
||
|
|
||
|
// heap_profile_table_pprof may be referenced after destructors are
|
||
|
// called (since that's when leak-checking is done), so we make
|
||
|
// a more-permanent copy that won't ever get destroyed.
|
||
|
static string* g_pprof_path = new string(FLAGS_symbolize_pprof);
|
||
|
|
||
|
// Returns NULL if we're on an OS where we can't get the invocation name.
|
||
|
// Using a static var is ok because we're not called from a thread.
|
||
|
static char* GetProgramInvocationName() {
|
||
|
#if defined(HAVE_PROGRAM_INVOCATION_NAME)
|
||
|
extern char* program_invocation_name; // gcc provides this
|
||
|
return program_invocation_name;
|
||
|
#elif defined(__MACH__)
|
||
|
// We don't want to allocate memory for this since we may be
|
||
|
// calculating it when memory is corrupted.
|
||
|
static char program_invocation_name[PATH_MAX];
|
||
|
if (program_invocation_name[0] == '\0') { // first time calculating
|
||
|
uint32_t length = sizeof(program_invocation_name);
|
||
|
if (_NSGetExecutablePath(program_invocation_name, &length))
|
||
|
return NULL;
|
||
|
}
|
||
|
return program_invocation_name;
|
||
|
#else
|
||
|
return NULL; // figure out a way to get argv[0]
|
||
|
#endif
|
||
|
}
|
||
|
|
||
|
// Prints an error message when you can't run Symbolize().
|
||
|
static void PrintError(const char* reason) {
|
||
|
RAW_LOG(ERROR,
|
||
|
"*** WARNING: Cannot convert addresses to symbols in output below.\n"
|
||
|
"*** Reason: %s\n"
|
||
|
"*** If you cannot fix this, try running pprof directly.\n",
|
||
|
reason);
|
||
|
}
|
||
|
|
||
|
void SymbolTable::Add(const void* addr) {
|
||
|
symbolization_table_[addr] = "";
|
||
|
}
|
||
|
|
||
|
const char* SymbolTable::GetSymbol(const void* addr) {
|
||
|
return symbolization_table_[addr];
|
||
|
}
|
||
|
|
||
|
// Updates symbolization_table with the pointers to symbol names corresponding
|
||
|
// to its keys. The symbol names are stored in out, which is allocated and
|
||
|
// freed by the caller of this routine.
|
||
|
// Note that the forking/etc is not thread-safe or re-entrant. That's
|
||
|
// ok for the purpose we need -- reporting leaks detected by heap-checker
|
||
|
// -- but be careful if you decide to use this routine for other purposes.
|
||
|
// Returns number of symbols read on error. If can't symbolize, returns 0
|
||
|
// and emits an error message about why.
|
||
|
int SymbolTable::Symbolize() {
|
||
|
#if !defined(HAVE_UNISTD_H) || !defined(HAVE_SYS_SOCKET_H) || !defined(HAVE_SYS_WAIT_H)
|
||
|
PrintError("Perftools does not know how to call a sub-process on this O/S");
|
||
|
return 0;
|
||
|
#else
|
||
|
const char* argv0 = GetProgramInvocationName();
|
||
|
if (argv0 == NULL) { // can't call symbolize if we can't figure out our name
|
||
|
PrintError("Cannot figure out the name of this executable (argv0)");
|
||
|
return 0;
|
||
|
}
|
||
|
if (access(g_pprof_path->c_str(), R_OK) != 0) {
|
||
|
PrintError("Cannot find 'pprof' (is PPROF_PATH set correctly?)");
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
// All this work is to do two-way communication. ugh.
|
||
|
int *child_in = NULL; // file descriptors
|
||
|
int *child_out = NULL; // for now, we don't worry about child_err
|
||
|
int child_fds[5][2]; // socketpair may be called up to five times below
|
||
|
|
||
|
// The client program may close its stdin and/or stdout and/or stderr
|
||
|
// thus allowing socketpair to reuse file descriptors 0, 1 or 2.
|
||
|
// In this case the communication between the forked processes may be broken
|
||
|
// if either the parent or the child tries to close or duplicate these
|
||
|
// descriptors. The loop below produces two pairs of file descriptors, each
|
||
|
// greater than 2 (stderr).
|
||
|
for (int i = 0; i < 5; i++) {
|
||
|
if (socketpair(AF_UNIX, SOCK_STREAM, 0, child_fds[i]) == -1) {
|
||
|
for (int j = 0; j < i; j++) {
|
||
|
close(child_fds[j][0]);
|
||
|
close(child_fds[j][1]);
|
||
|
PrintError("Cannot create a socket pair");
|
||
|
return 0;
|
||
|
}
|
||
|
} else {
|
||
|
if ((child_fds[i][0] > 2) && (child_fds[i][1] > 2)) {
|
||
|
if (child_in == NULL) {
|
||
|
child_in = child_fds[i];
|
||
|
} else {
|
||
|
child_out = child_fds[i];
|
||
|
for (int j = 0; j < i; j++) {
|
||
|
if (child_fds[j] == child_in) continue;
|
||
|
close(child_fds[j][0]);
|
||
|
close(child_fds[j][1]);
|
||
|
}
|
||
|
break;
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
switch (fork()) {
|
||
|
case -1: { // error
|
||
|
close(child_in[0]);
|
||
|
close(child_in[1]);
|
||
|
close(child_out[0]);
|
||
|
close(child_out[1]);
|
||
|
PrintError("Unknown error calling fork()");
|
||
|
return 0;
|
||
|
}
|
||
|
case 0: { // child
|
||
|
close(child_in[1]); // child uses the 0's, parent uses the 1's
|
||
|
close(child_out[1]); // child uses the 0's, parent uses the 1's
|
||
|
close(0);
|
||
|
close(1);
|
||
|
if (dup2(child_in[0], 0) == -1) _exit(1);
|
||
|
if (dup2(child_out[0], 1) == -1) _exit(2);
|
||
|
// Unset vars that might cause trouble when we fork
|
||
|
unsetenv("CPUPROFILE");
|
||
|
unsetenv("HEAPPROFILE");
|
||
|
unsetenv("HEAPCHECK");
|
||
|
unsetenv("PERFTOOLS_VERBOSE");
|
||
|
execlp(g_pprof_path->c_str(), g_pprof_path->c_str(),
|
||
|
"--symbols", argv0, NULL);
|
||
|
_exit(3); // if execvp fails, it's bad news for us
|
||
|
}
|
||
|
default: { // parent
|
||
|
close(child_in[0]); // child uses the 0's, parent uses the 1's
|
||
|
close(child_out[0]); // child uses the 0's, parent uses the 1's
|
||
|
#ifdef HAVE_POLL_H
|
||
|
// Waiting for 1ms seems to give the OS time to notice any errors.
|
||
|
poll(0, 0, 1);
|
||
|
// For maximum safety, we check to make sure the execlp
|
||
|
// succeeded before trying to write. (Otherwise we'll get a
|
||
|
// SIGPIPE.) For systems without poll.h, we'll just skip this
|
||
|
// check, and trust that the user set PPROF_PATH correctly!
|
||
|
struct pollfd pfd = { child_in[1], POLLOUT, 0 };
|
||
|
if (!poll(&pfd, 1, 0) || !(pfd.revents & POLLOUT) ||
|
||
|
(pfd.revents & (POLLHUP|POLLERR))) {
|
||
|
PrintError("Cannot run 'pprof' (is PPROF_PATH set correctly?)");
|
||
|
return 0;
|
||
|
}
|
||
|
#endif
|
||
|
#if defined(__CYGWIN__) || defined(__CYGWIN32__)
|
||
|
// On cygwin, DumpProcSelfMaps() takes a HANDLE, not an fd. Convert.
|
||
|
const HANDLE symbols_handle = (HANDLE) get_osfhandle(child_in[1]);
|
||
|
DumpProcSelfMaps(symbols_handle);
|
||
|
#else
|
||
|
DumpProcSelfMaps(child_in[1]); // what pprof expects on stdin
|
||
|
#endif
|
||
|
|
||
|
// Allocate 24 bytes = ("0x" + 8 bytes + "\n" + overhead) for each
|
||
|
// address to feed to pprof.
|
||
|
const int kOutBufSize = 24 * symbolization_table_.size();
|
||
|
char *pprof_buffer = new char[kOutBufSize];
|
||
|
int written = 0;
|
||
|
for (SymbolMap::const_iterator iter = symbolization_table_.begin();
|
||
|
iter != symbolization_table_.end(); ++iter) {
|
||
|
written += snprintf(pprof_buffer + written, kOutBufSize - written,
|
||
|
// pprof expects format to be 0xXXXXXX
|
||
|
"0x%"PRIxPTR"\n", reinterpret_cast<uintptr_t>(iter->first));
|
||
|
}
|
||
|
write(child_in[1], pprof_buffer, strlen(pprof_buffer));
|
||
|
close(child_in[1]); // that's all we need to write
|
||
|
|
||
|
const int kSymbolBufferSize = kSymbolSize * symbolization_table_.size();
|
||
|
int total_bytes_read = 0;
|
||
|
delete[] symbol_buffer_;
|
||
|
symbol_buffer_ = new char[kSymbolBufferSize];
|
||
|
memset(symbol_buffer_, '\0', kSymbolBufferSize);
|
||
|
while (1) {
|
||
|
int bytes_read = read(child_out[1], symbol_buffer_ + total_bytes_read,
|
||
|
kSymbolBufferSize - total_bytes_read);
|
||
|
if (bytes_read < 0) {
|
||
|
close(child_out[1]);
|
||
|
PrintError("Cannot read data from pprof");
|
||
|
return 0;
|
||
|
} else if (bytes_read == 0) {
|
||
|
close(child_out[1]);
|
||
|
wait(NULL);
|
||
|
break;
|
||
|
} else {
|
||
|
total_bytes_read += bytes_read;
|
||
|
}
|
||
|
}
|
||
|
// We have successfully read the output of pprof into out. Make sure
|
||
|
// the last symbol is full (we can tell because it ends with a \n).
|
||
|
if (total_bytes_read == 0 || symbol_buffer_[total_bytes_read - 1] != '\n')
|
||
|
return 0;
|
||
|
// make the symbolization_table_ values point to the output vector
|
||
|
SymbolMap::iterator fill = symbolization_table_.begin();
|
||
|
int num_symbols = 0;
|
||
|
const char *current_name = symbol_buffer_;
|
||
|
for (int i = 0; i < total_bytes_read; i++) {
|
||
|
if (symbol_buffer_[i] == '\n') {
|
||
|
fill->second = current_name;
|
||
|
symbol_buffer_[i] = '\0';
|
||
|
current_name = symbol_buffer_ + i + 1;
|
||
|
fill++;
|
||
|
num_symbols++;
|
||
|
}
|
||
|
}
|
||
|
return num_symbols;
|
||
|
}
|
||
|
}
|
||
|
PrintError("Unkown error (should never occur!)");
|
||
|
return 0; // shouldn't be reachable
|
||
|
#endif
|
||
|
}
|