mirror of
https://github.com/klzgrad/naiveproxy.git
synced 2024-12-11 06:36:11 +03:00
407 lines
13 KiB
C
407 lines
13 KiB
C
|
// Copyright (c) 2011 The Chromium Authors. All rights reserved.
|
||
|
// Use of this source code is governed by a BSD-style license that can be
|
||
|
// found in the LICENSE file.
|
||
|
|
||
|
// Derived from google3/util/gtl/stl_util.h
|
||
|
|
||
|
#ifndef BASE_STL_UTIL_H_
|
||
|
#define BASE_STL_UTIL_H_
|
||
|
|
||
|
#include <algorithm>
|
||
|
#include <deque>
|
||
|
#include <forward_list>
|
||
|
#include <functional>
|
||
|
#include <initializer_list>
|
||
|
#include <iterator>
|
||
|
#include <list>
|
||
|
#include <map>
|
||
|
#include <set>
|
||
|
#include <string>
|
||
|
#include <unordered_map>
|
||
|
#include <unordered_set>
|
||
|
#include <vector>
|
||
|
|
||
|
#include "base/logging.h"
|
||
|
#include "base/optional.h"
|
||
|
|
||
|
namespace base {
|
||
|
|
||
|
namespace internal {
|
||
|
|
||
|
// Calls erase on iterators of matching elements.
|
||
|
template <typename Container, typename Predicate>
|
||
|
void IterateAndEraseIf(Container& container, Predicate pred) {
|
||
|
for (auto it = container.begin(); it != container.end();) {
|
||
|
if (pred(*it))
|
||
|
it = container.erase(it);
|
||
|
else
|
||
|
++it;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
} // namespace internal
|
||
|
|
||
|
// C++14 implementation of C++17's std::size():
|
||
|
// http://en.cppreference.com/w/cpp/iterator/size
|
||
|
template <typename Container>
|
||
|
constexpr auto size(const Container& c) -> decltype(c.size()) {
|
||
|
return c.size();
|
||
|
}
|
||
|
|
||
|
template <typename T, size_t N>
|
||
|
constexpr size_t size(const T (&array)[N]) noexcept {
|
||
|
return N;
|
||
|
}
|
||
|
|
||
|
// C++14 implementation of C++17's std::empty():
|
||
|
// http://en.cppreference.com/w/cpp/iterator/empty
|
||
|
template <typename Container>
|
||
|
constexpr auto empty(const Container& c) -> decltype(c.empty()) {
|
||
|
return c.empty();
|
||
|
}
|
||
|
|
||
|
template <typename T, size_t N>
|
||
|
constexpr bool empty(const T (&array)[N]) noexcept {
|
||
|
return false;
|
||
|
}
|
||
|
|
||
|
template <typename T>
|
||
|
constexpr bool empty(std::initializer_list<T> il) noexcept {
|
||
|
return il.size() == 0;
|
||
|
}
|
||
|
|
||
|
// C++14 implementation of C++17's std::data():
|
||
|
// http://en.cppreference.com/w/cpp/iterator/data
|
||
|
template <typename Container>
|
||
|
constexpr auto data(Container& c) -> decltype(c.data()) {
|
||
|
return c.data();
|
||
|
}
|
||
|
|
||
|
// std::basic_string::data() had no mutable overload prior to C++17 [1].
|
||
|
// Hence this overload is provided.
|
||
|
// Note: str[0] is safe even for empty strings, as they are guaranteed to be
|
||
|
// null-terminated [2].
|
||
|
//
|
||
|
// [1] http://en.cppreference.com/w/cpp/string/basic_string/data
|
||
|
// [2] http://en.cppreference.com/w/cpp/string/basic_string/operator_at
|
||
|
template <typename CharT, typename Traits, typename Allocator>
|
||
|
CharT* data(std::basic_string<CharT, Traits, Allocator>& str) {
|
||
|
return std::addressof(str[0]);
|
||
|
}
|
||
|
|
||
|
template <typename Container>
|
||
|
constexpr auto data(const Container& c) -> decltype(c.data()) {
|
||
|
return c.data();
|
||
|
}
|
||
|
|
||
|
template <typename T, size_t N>
|
||
|
constexpr T* data(T (&array)[N]) noexcept {
|
||
|
return array;
|
||
|
}
|
||
|
|
||
|
template <typename T>
|
||
|
constexpr const T* data(std::initializer_list<T> il) noexcept {
|
||
|
return il.begin();
|
||
|
}
|
||
|
|
||
|
// Returns a const reference to the underlying container of a container adapter.
|
||
|
// Works for std::priority_queue, std::queue, and std::stack.
|
||
|
template <class A>
|
||
|
const typename A::container_type& GetUnderlyingContainer(const A& adapter) {
|
||
|
struct ExposedAdapter : A {
|
||
|
using A::c;
|
||
|
};
|
||
|
return adapter.*&ExposedAdapter::c;
|
||
|
}
|
||
|
|
||
|
// Clears internal memory of an STL object.
|
||
|
// STL clear()/reserve(0) does not always free internal memory allocated
|
||
|
// This function uses swap/destructor to ensure the internal memory is freed.
|
||
|
template <class T>
|
||
|
void STLClearObject(T* obj) {
|
||
|
T tmp;
|
||
|
tmp.swap(*obj);
|
||
|
// Sometimes "T tmp" allocates objects with memory (arena implementation?).
|
||
|
// Hence using additional reserve(0) even if it doesn't always work.
|
||
|
obj->reserve(0);
|
||
|
}
|
||
|
|
||
|
// Counts the number of instances of val in a container.
|
||
|
template <typename Container, typename T>
|
||
|
typename std::iterator_traits<
|
||
|
typename Container::const_iterator>::difference_type
|
||
|
STLCount(const Container& container, const T& val) {
|
||
|
return std::count(container.begin(), container.end(), val);
|
||
|
}
|
||
|
|
||
|
// Test to see if a set or map contains a particular key.
|
||
|
// Returns true if the key is in the collection.
|
||
|
template <typename Collection, typename Key>
|
||
|
bool ContainsKey(const Collection& collection, const Key& key) {
|
||
|
return collection.find(key) != collection.end();
|
||
|
}
|
||
|
|
||
|
namespace internal {
|
||
|
|
||
|
template <typename Collection>
|
||
|
class HasKeyType {
|
||
|
template <typename C>
|
||
|
static std::true_type test(typename C::key_type*);
|
||
|
template <typename C>
|
||
|
static std::false_type test(...);
|
||
|
|
||
|
public:
|
||
|
static constexpr bool value = decltype(test<Collection>(nullptr))::value;
|
||
|
};
|
||
|
|
||
|
} // namespace internal
|
||
|
|
||
|
// Test to see if a collection like a vector contains a particular value.
|
||
|
// Returns true if the value is in the collection.
|
||
|
// Don't use this on collections such as sets or maps. This is enforced by
|
||
|
// disabling this method if the collection defines a key_type.
|
||
|
template <typename Collection,
|
||
|
typename Value,
|
||
|
typename std::enable_if<!internal::HasKeyType<Collection>::value,
|
||
|
int>::type = 0>
|
||
|
bool ContainsValue(const Collection& collection, const Value& value) {
|
||
|
return std::find(std::begin(collection), std::end(collection), value) !=
|
||
|
std::end(collection);
|
||
|
}
|
||
|
|
||
|
// Returns true if the container is sorted.
|
||
|
template <typename Container>
|
||
|
bool STLIsSorted(const Container& cont) {
|
||
|
// Note: Use reverse iterator on container to ensure we only require
|
||
|
// value_type to implement operator<.
|
||
|
return std::adjacent_find(cont.rbegin(), cont.rend(),
|
||
|
std::less<typename Container::value_type>()) ==
|
||
|
cont.rend();
|
||
|
}
|
||
|
|
||
|
// Returns a new ResultType containing the difference of two sorted containers.
|
||
|
template <typename ResultType, typename Arg1, typename Arg2>
|
||
|
ResultType STLSetDifference(const Arg1& a1, const Arg2& a2) {
|
||
|
DCHECK(STLIsSorted(a1));
|
||
|
DCHECK(STLIsSorted(a2));
|
||
|
ResultType difference;
|
||
|
std::set_difference(a1.begin(), a1.end(), a2.begin(), a2.end(),
|
||
|
std::inserter(difference, difference.end()));
|
||
|
return difference;
|
||
|
}
|
||
|
|
||
|
// Returns a new ResultType containing the union of two sorted containers.
|
||
|
template <typename ResultType, typename Arg1, typename Arg2>
|
||
|
ResultType STLSetUnion(const Arg1& a1, const Arg2& a2) {
|
||
|
DCHECK(STLIsSorted(a1));
|
||
|
DCHECK(STLIsSorted(a2));
|
||
|
ResultType result;
|
||
|
std::set_union(a1.begin(), a1.end(), a2.begin(), a2.end(),
|
||
|
std::inserter(result, result.end()));
|
||
|
return result;
|
||
|
}
|
||
|
|
||
|
// Returns a new ResultType containing the intersection of two sorted
|
||
|
// containers.
|
||
|
template <typename ResultType, typename Arg1, typename Arg2>
|
||
|
ResultType STLSetIntersection(const Arg1& a1, const Arg2& a2) {
|
||
|
DCHECK(STLIsSorted(a1));
|
||
|
DCHECK(STLIsSorted(a2));
|
||
|
ResultType result;
|
||
|
std::set_intersection(a1.begin(), a1.end(), a2.begin(), a2.end(),
|
||
|
std::inserter(result, result.end()));
|
||
|
return result;
|
||
|
}
|
||
|
|
||
|
// Returns true if the sorted container |a1| contains all elements of the sorted
|
||
|
// container |a2|.
|
||
|
template <typename Arg1, typename Arg2>
|
||
|
bool STLIncludes(const Arg1& a1, const Arg2& a2) {
|
||
|
DCHECK(STLIsSorted(a1));
|
||
|
DCHECK(STLIsSorted(a2));
|
||
|
return std::includes(a1.begin(), a1.end(), a2.begin(), a2.end());
|
||
|
}
|
||
|
|
||
|
// Erase/EraseIf are based on library fundamentals ts v2 erase/erase_if
|
||
|
// http://en.cppreference.com/w/cpp/experimental/lib_extensions_2
|
||
|
// They provide a generic way to erase elements from a container.
|
||
|
// The functions here implement these for the standard containers until those
|
||
|
// functions are available in the C++ standard.
|
||
|
// For Chromium containers overloads should be defined in their own headers
|
||
|
// (like standard containers).
|
||
|
// Note: there is no std::erase for standard associative containers so we don't
|
||
|
// have it either.
|
||
|
|
||
|
template <typename CharT, typename Traits, typename Allocator, typename Value>
|
||
|
void Erase(std::basic_string<CharT, Traits, Allocator>& container,
|
||
|
const Value& value) {
|
||
|
container.erase(std::remove(container.begin(), container.end(), value),
|
||
|
container.end());
|
||
|
}
|
||
|
|
||
|
template <typename CharT, typename Traits, typename Allocator, class Predicate>
|
||
|
void EraseIf(std::basic_string<CharT, Traits, Allocator>& container,
|
||
|
Predicate pred) {
|
||
|
container.erase(std::remove_if(container.begin(), container.end(), pred),
|
||
|
container.end());
|
||
|
}
|
||
|
|
||
|
template <class T, class Allocator, class Value>
|
||
|
void Erase(std::deque<T, Allocator>& container, const Value& value) {
|
||
|
container.erase(std::remove(container.begin(), container.end(), value),
|
||
|
container.end());
|
||
|
}
|
||
|
|
||
|
template <class T, class Allocator, class Predicate>
|
||
|
void EraseIf(std::deque<T, Allocator>& container, Predicate pred) {
|
||
|
container.erase(std::remove_if(container.begin(), container.end(), pred),
|
||
|
container.end());
|
||
|
}
|
||
|
|
||
|
template <class T, class Allocator, class Value>
|
||
|
void Erase(std::vector<T, Allocator>& container, const Value& value) {
|
||
|
container.erase(std::remove(container.begin(), container.end(), value),
|
||
|
container.end());
|
||
|
}
|
||
|
|
||
|
template <class T, class Allocator, class Predicate>
|
||
|
void EraseIf(std::vector<T, Allocator>& container, Predicate pred) {
|
||
|
container.erase(std::remove_if(container.begin(), container.end(), pred),
|
||
|
container.end());
|
||
|
}
|
||
|
|
||
|
template <class T, class Allocator, class Value>
|
||
|
void Erase(std::forward_list<T, Allocator>& container, const Value& value) {
|
||
|
// Unlike std::forward_list::remove, this function template accepts
|
||
|
// heterogeneous types and does not force a conversion to the container's
|
||
|
// value type before invoking the == operator.
|
||
|
container.remove_if([&](const T& cur) { return cur == value; });
|
||
|
}
|
||
|
|
||
|
template <class T, class Allocator, class Predicate>
|
||
|
void EraseIf(std::forward_list<T, Allocator>& container, Predicate pred) {
|
||
|
container.remove_if(pred);
|
||
|
}
|
||
|
|
||
|
template <class T, class Allocator, class Value>
|
||
|
void Erase(std::list<T, Allocator>& container, const Value& value) {
|
||
|
// Unlike std::list::remove, this function template accepts heterogeneous
|
||
|
// types and does not force a conversion to the container's value type before
|
||
|
// invoking the == operator.
|
||
|
container.remove_if([&](const T& cur) { return cur == value; });
|
||
|
}
|
||
|
|
||
|
template <class T, class Allocator, class Predicate>
|
||
|
void EraseIf(std::list<T, Allocator>& container, Predicate pred) {
|
||
|
container.remove_if(pred);
|
||
|
}
|
||
|
|
||
|
template <class Key, class T, class Compare, class Allocator, class Predicate>
|
||
|
void EraseIf(std::map<Key, T, Compare, Allocator>& container, Predicate pred) {
|
||
|
internal::IterateAndEraseIf(container, pred);
|
||
|
}
|
||
|
|
||
|
template <class Key, class T, class Compare, class Allocator, class Predicate>
|
||
|
void EraseIf(std::multimap<Key, T, Compare, Allocator>& container,
|
||
|
Predicate pred) {
|
||
|
internal::IterateAndEraseIf(container, pred);
|
||
|
}
|
||
|
|
||
|
template <class Key, class Compare, class Allocator, class Predicate>
|
||
|
void EraseIf(std::set<Key, Compare, Allocator>& container, Predicate pred) {
|
||
|
internal::IterateAndEraseIf(container, pred);
|
||
|
}
|
||
|
|
||
|
template <class Key, class Compare, class Allocator, class Predicate>
|
||
|
void EraseIf(std::multiset<Key, Compare, Allocator>& container,
|
||
|
Predicate pred) {
|
||
|
internal::IterateAndEraseIf(container, pred);
|
||
|
}
|
||
|
|
||
|
template <class Key,
|
||
|
class T,
|
||
|
class Hash,
|
||
|
class KeyEqual,
|
||
|
class Allocator,
|
||
|
class Predicate>
|
||
|
void EraseIf(std::unordered_map<Key, T, Hash, KeyEqual, Allocator>& container,
|
||
|
Predicate pred) {
|
||
|
internal::IterateAndEraseIf(container, pred);
|
||
|
}
|
||
|
|
||
|
template <class Key,
|
||
|
class T,
|
||
|
class Hash,
|
||
|
class KeyEqual,
|
||
|
class Allocator,
|
||
|
class Predicate>
|
||
|
void EraseIf(
|
||
|
std::unordered_multimap<Key, T, Hash, KeyEqual, Allocator>& container,
|
||
|
Predicate pred) {
|
||
|
internal::IterateAndEraseIf(container, pred);
|
||
|
}
|
||
|
|
||
|
template <class Key,
|
||
|
class Hash,
|
||
|
class KeyEqual,
|
||
|
class Allocator,
|
||
|
class Predicate>
|
||
|
void EraseIf(std::unordered_set<Key, Hash, KeyEqual, Allocator>& container,
|
||
|
Predicate pred) {
|
||
|
internal::IterateAndEraseIf(container, pred);
|
||
|
}
|
||
|
|
||
|
template <class Key,
|
||
|
class Hash,
|
||
|
class KeyEqual,
|
||
|
class Allocator,
|
||
|
class Predicate>
|
||
|
void EraseIf(std::unordered_multiset<Key, Hash, KeyEqual, Allocator>& container,
|
||
|
Predicate pred) {
|
||
|
internal::IterateAndEraseIf(container, pred);
|
||
|
}
|
||
|
|
||
|
// A helper class to be used as the predicate with |EraseIf| to implement
|
||
|
// in-place set intersection. Helps implement the algorithm of going through
|
||
|
// each container an element at a time, erasing elements from the first
|
||
|
// container if they aren't in the second container. Requires each container be
|
||
|
// sorted. Note that the logic below appears inverted since it is returning
|
||
|
// whether an element should be erased.
|
||
|
template <class Collection>
|
||
|
class IsNotIn {
|
||
|
public:
|
||
|
explicit IsNotIn(const Collection& collection)
|
||
|
: i_(collection.begin()), end_(collection.end()) {}
|
||
|
|
||
|
bool operator()(const typename Collection::value_type& x) {
|
||
|
while (i_ != end_ && *i_ < x)
|
||
|
++i_;
|
||
|
if (i_ == end_)
|
||
|
return true;
|
||
|
if (*i_ == x) {
|
||
|
++i_;
|
||
|
return false;
|
||
|
}
|
||
|
return true;
|
||
|
}
|
||
|
|
||
|
private:
|
||
|
typename Collection::const_iterator i_;
|
||
|
const typename Collection::const_iterator end_;
|
||
|
};
|
||
|
|
||
|
// Helper for returning the optional value's address, or nullptr.
|
||
|
template <class T>
|
||
|
T* OptionalOrNullptr(base::Optional<T>& optional) {
|
||
|
return optional.has_value() ? &optional.value() : nullptr;
|
||
|
}
|
||
|
|
||
|
template <class T>
|
||
|
const T* OptionalOrNullptr(const base::Optional<T>& optional) {
|
||
|
return optional.has_value() ? &optional.value() : nullptr;
|
||
|
}
|
||
|
|
||
|
} // namespace base
|
||
|
|
||
|
#endif // BASE_STL_UTIL_H_
|