naiveproxy/base/android/linker/modern_linker_jni.cc

644 lines
23 KiB
C++
Raw Normal View History

2018-02-02 13:49:39 +03:00
// Copyright 2015 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
// This is the version of the Android-specific Chromium linker that uses
// the Android M and later system linker to load libraries.
// This source code *cannot* depend on anything from base/ or the C++
// STL, to keep the final library small, and avoid ugly dependency issues.
#include "modern_linker_jni.h"
#include <sys/mman.h>
#include <sys/stat.h>
#include <sys/types.h>
#include <dlfcn.h>
#include <errno.h>
#include <fcntl.h>
#include <jni.h>
#include <limits.h>
#include <link.h>
#include <stddef.h>
#include <string.h>
#include "android_dlext.h"
#include "linker_jni.h"
#define PAGE_START(x) ((x) & PAGE_MASK)
#define PAGE_END(x) PAGE_START((x) + (PAGE_SIZE - 1))
namespace chromium_android_linker {
namespace {
// Record of the Java VM passed to JNI_OnLoad().
static JavaVM* s_java_vm = nullptr;
// Get the CPU ABI string for which the linker is running.
//
// The returned string is used to construct the path to libchrome.so when
// loading directly from APK.
//
// |env| is the current JNI environment handle.
// |clazz| is the static class handle for org.chromium.base.Linker,
// and is ignored here.
// Returns the CPU ABI string for which the linker is running.
jstring GetCpuAbi(JNIEnv* env, jclass clazz) {
#if defined(__arm__) && defined(__ARM_ARCH_7A__)
static const char* kCurrentAbi = "armeabi-v7a";
#elif defined(__arm__)
static const char* kCurrentAbi = "armeabi";
#elif defined(__i386__)
static const char* kCurrentAbi = "x86";
#elif defined(__mips__)
static const char* kCurrentAbi = "mips";
#elif defined(__x86_64__)
static const char* kCurrentAbi = "x86_64";
#elif defined(__aarch64__)
static const char* kCurrentAbi = "arm64-v8a";
#else
#error "Unsupported target abi"
#endif
return env->NewStringUTF(kCurrentAbi);
}
// Convenience wrapper around dlsym() on the main executable. Returns
// the address of the requested symbol, or nullptr if not found. Status
// is available from dlerror().
void* Dlsym(const char* symbol_name) {
static void* handle = nullptr;
if (!handle)
handle = dlopen(nullptr, RTLD_NOW);
void* result = dlsym(handle, symbol_name);
return result;
}
// dl_iterate_phdr() wrapper, accessed via dlsym lookup. Done this way.
// so that this code compiles for Android versions that are too early to
// offer it. Checks in LibraryLoader.java should ensure that we
// never reach here at runtime on Android versions that are too old to
// supply dl_iterate_phdr; that is, earlier than Android M. Returns
// false if no dl_iterate_phdr() is available, otherwise true with the
// return value from dl_iterate_phdr() in |status|.
bool DlIteratePhdr(int (*callback)(dl_phdr_info*, size_t, void*),
void* data,
int* status) {
using DlIteratePhdrCallback = int (*)(dl_phdr_info*, size_t, void*);
using DlIteratePhdrFunctionPtr = int (*)(DlIteratePhdrCallback, void*);
static DlIteratePhdrFunctionPtr function_ptr = nullptr;
if (!function_ptr) {
function_ptr =
reinterpret_cast<DlIteratePhdrFunctionPtr>(Dlsym("dl_iterate_phdr"));
if (!function_ptr) {
LOG_ERROR("dlsym: dl_iterate_phdr: %s", dlerror());
return false;
}
}
*status = (*function_ptr)(callback, data);
return true;
}
// Convenience struct wrapper round android_dlextinfo.
struct AndroidDlextinfo {
AndroidDlextinfo(int flags,
void* reserved_addr, size_t reserved_size, int relro_fd) {
memset(&extinfo, 0, sizeof(extinfo));
extinfo.flags = flags;
extinfo.reserved_addr = reserved_addr;
extinfo.reserved_size = reserved_size;
extinfo.relro_fd = relro_fd;
}
android_dlextinfo extinfo;
};
// android_dlopen_ext() wrapper, accessed via dlsym lookup. Returns false
// if no android_dlopen_ext() is available, otherwise true with the return
// value from android_dlopen_ext() in |status|.
bool AndroidDlopenExt(const char* filename,
int flag,
const AndroidDlextinfo* dlextinfo,
void** status) {
using DlopenExtFunctionPtr = void* (*)(const char*,
int, const android_dlextinfo*);
static DlopenExtFunctionPtr function_ptr = nullptr;
if (!function_ptr) {
function_ptr =
reinterpret_cast<DlopenExtFunctionPtr>(Dlsym("android_dlopen_ext"));
if (!function_ptr) {
LOG_ERROR("dlsym: android_dlopen_ext: %s", dlerror());
return false;
}
}
const android_dlextinfo* extinfo = &dlextinfo->extinfo;
LOG_INFO("android_dlopen_ext:"
" flags=0x%llx, reserved_addr=%p, reserved_size=%d, relro_fd=%d",
static_cast<long long>(extinfo->flags),
extinfo->reserved_addr,
static_cast<int>(extinfo->reserved_size),
extinfo->relro_fd);
*status = (*function_ptr)(filename, flag, extinfo);
return true;
}
// Callback data for FindLoadedLibrarySize().
struct CallbackData {
explicit CallbackData(void* address)
: load_address(address), load_size(0), min_vaddr(0) { }
const void* load_address;
size_t load_size;
size_t min_vaddr;
};
// Callback for dl_iterate_phdr(). Read phdrs to identify whether or not
// this library's load address matches the |load_address| passed in
// |data|. If yes, pass back load size and min vaddr via |data|. A non-zero
// return value terminates iteration.
int FindLoadedLibrarySize(dl_phdr_info* info, size_t size UNUSED, void* data) {
CallbackData* callback_data = reinterpret_cast<CallbackData*>(data);
// Use max and min vaddr to compute the library's load size.
ElfW(Addr) min_vaddr = ~0;
ElfW(Addr) max_vaddr = 0;
bool is_matching = false;
for (size_t i = 0; i < info->dlpi_phnum; ++i) {
const ElfW(Phdr)* phdr = &info->dlpi_phdr[i];
if (phdr->p_type != PT_LOAD)
continue;
// See if this segment's load address matches what we passed to
// android_dlopen_ext as extinfo.reserved_addr.
void* load_addr = reinterpret_cast<void*>(info->dlpi_addr + phdr->p_vaddr);
if (load_addr == callback_data->load_address)
is_matching = true;
if (phdr->p_vaddr < min_vaddr)
min_vaddr = phdr->p_vaddr;
if (phdr->p_vaddr + phdr->p_memsz > max_vaddr)
max_vaddr = phdr->p_vaddr + phdr->p_memsz;
}
// If this library matches what we seek, return its load size.
if (is_matching) {
callback_data->load_size = PAGE_END(max_vaddr) - PAGE_START(min_vaddr);
callback_data->min_vaddr = min_vaddr;
return true;
}
return false;
}
// Helper class for anonymous memory mapping.
class ScopedAnonymousMmap {
public:
ScopedAnonymousMmap(void* addr, size_t size);
~ScopedAnonymousMmap() { munmap(addr_, size_); }
void* GetAddr() const { return effective_addr_; }
void Release() { addr_ = nullptr; size_ = 0; effective_addr_ = nullptr; }
private:
void* addr_;
size_t size_;
// The effective_addr_ is the address seen by client code. It may or may
// not be the same as addr_, the real start of the anonymous mapping.
void* effective_addr_;
};
// ScopedAnonymousMmap constructor. |addr| is a requested mapping address, or
// zero if any address will do, and |size| is the size of mapping required.
ScopedAnonymousMmap::ScopedAnonymousMmap(void* addr, size_t size) {
#if RESERVE_BREAKPAD_GUARD_REGION
// Increase size to extend the address reservation mapping so that it will
// also include a guard region from load_bias_ to start_addr. If loading
// at a fixed address, move our requested address back by the guard region
// size.
size += kBreakpadGuardRegionBytes;
if (addr) {
if (addr < reinterpret_cast<void*>(kBreakpadGuardRegionBytes)) {
LOG_ERROR("Fixed address %p is too low to accommodate Breakpad guard",
addr);
addr_ = MAP_FAILED;
size_ = 0;
return;
}
addr = reinterpret_cast<void*>(
reinterpret_cast<uintptr_t>(addr) - kBreakpadGuardRegionBytes);
}
LOG_INFO("Added %d to size, for Breakpad guard",
static_cast<int>(kBreakpadGuardRegionBytes));
#endif
addr_ = mmap(addr, size, PROT_NONE, MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
if (addr_ != MAP_FAILED) {
size_ = size;
} else {
LOG_INFO("mmap failed: %s", strerror(errno));
size_ = 0;
}
effective_addr_ = addr_;
#if RESERVE_BREAKPAD_GUARD_REGION
// If we increased size to accommodate a Breakpad guard region, move
// the effective address, if valid, upwards by the size of the guard region.
if (addr_ == MAP_FAILED)
return;
if (addr_ < reinterpret_cast<void*>(kBreakpadGuardRegionBytes)) {
LOG_ERROR("Map address %p is too low to accommodate Breakpad guard",
addr_);
effective_addr_ = MAP_FAILED;
} else {
effective_addr_ = reinterpret_cast<void*>(
reinterpret_cast<uintptr_t>(addr_) + kBreakpadGuardRegionBytes);
}
#endif
}
// Helper for LoadLibrary(). Return the actual size of the library loaded
// at |addr| in |load_size|, and the min vaddr in |min_vaddr|. Returns false
// if the library appears not to be loaded.
bool GetLibraryLoadSize(void* addr, size_t* load_size, size_t* min_vaddr) {
LOG_INFO("Called for %p", addr);
// Find the real load size and min vaddr for the library loaded at |addr|.
CallbackData callback_data(addr);
int status = 0;
if (!DlIteratePhdr(&FindLoadedLibrarySize, &callback_data, &status)) {
LOG_ERROR("No dl_iterate_phdr function found");
return false;
}
if (!status) {
LOG_ERROR("Failed to find library at address %p", addr);
return false;
}
*load_size = callback_data.load_size;
*min_vaddr = callback_data.min_vaddr;
return true;
}
// Helper for LoadLibrary(). We reserve an address space larger than
// needed. After library loading we want to trim that reservation to only
// what is needed. Failure to trim should not occur, but if it does then
// everything will still run, so we treat it as a warning rather than
// an error.
void ResizeReservedAddressSpace(void* addr,
size_t reserved_size,
size_t load_size,
size_t min_vaddr) {
LOG_INFO("Called for %p, reserved %d, loaded %d, min_vaddr %d",
addr, static_cast<int>(reserved_size),
static_cast<int>(load_size), static_cast<int>(min_vaddr));
const uintptr_t uintptr_addr = reinterpret_cast<uintptr_t>(addr);
if (reserved_size > load_size) {
// Unmap the part of the reserved address space that is beyond the end of
// the loaded library data.
void* unmap = reinterpret_cast<void*>(uintptr_addr + load_size);
const size_t length = reserved_size - load_size;
if (munmap(unmap, length) == -1) {
LOG_ERROR("WARNING: unmap of %d bytes at %p failed: %s",
static_cast<int>(length), unmap, strerror(errno));
}
} else {
LOG_ERROR("WARNING: library reservation was too small");
}
#if RESERVE_BREAKPAD_GUARD_REGION
if (kBreakpadGuardRegionBytes > min_vaddr) {
// Unmap the part of the reserved address space that is ahead of where we
// actually need the guard region to start. Resizes the guard region to
// min_vaddr bytes.
void* unmap =
reinterpret_cast<void*>(uintptr_addr - kBreakpadGuardRegionBytes);
const size_t length = kBreakpadGuardRegionBytes - min_vaddr;
if (munmap(unmap, length) == -1) {
LOG_ERROR("WARNING: unmap of %d bytes at %p failed: %s",
static_cast<int>(length), unmap, strerror(errno));
}
} else {
LOG_ERROR("WARNING: breakpad guard region reservation was too small");
}
#endif
}
// Load a library with the chromium linker, using android_dlopen_ext().
//
// android_dlopen_ext() understands how to directly load from a zipfile,
// based on the format of |dlopen_ext_path|. If it contains a "!/" separator
// then the string indicates <zip_path>!/<file_path> and indicates the
// file_path element within the zip file at zip_path. A library in a
// zipfile must be uncompressed and page aligned. The library is expected
// to be lib/<abi_tag>/crazy.<basename>. The <abi_tag> used will be the
// same as the abi for this linker. The "crazy." prefix is included
// so that the Android Package Manager doesn't extract the library into
// /data/app-lib.
//
// If |dlopen_ext_path| contains no "!/" separator then android_dlopen_ext()
// assumes that it is a normal path to a standalone library file.
//
// Loading the library will also call its JNI_OnLoad() method, which
// shall register its methods. Note that lazy native method resolution
// will _not_ work after this, because Dalvik uses the system's dlsym()
// which won't see the new library, so explicit registration is mandatory.
//
// |env| is the current JNI environment handle.
// |clazz| is the static class handle for org.chromium.base.Linker,
// and is ignored here.
// |dlopen_ext_path| is the library identifier (e.g. libfoo.so).
// |load_address| is an explicit load address.
// |relro_path| is the path to the file into which RELRO data is held.
// |lib_info_obj| is a LibInfo handle used to communicate information
// with the Java side.
// Return true on success.
jboolean LoadLibrary(JNIEnv* env,
jclass clazz,
jstring dlopen_ext_path,
jlong load_address,
jobject lib_info_obj) {
String dlopen_library_path(env, dlopen_ext_path);
LOG_INFO("Called for %s, at address 0x%llx",
dlopen_library_path.c_str(), load_address);
if (!IsValidAddress(load_address)) {
LOG_ERROR("Invalid address 0x%llx", load_address);
return false;
}
const size_t size = kAddressSpaceReservationSize;
void* wanted_addr = reinterpret_cast<void*>(load_address);
// Reserve the address space into which we load the library.
ScopedAnonymousMmap mapping(wanted_addr, size);
void* addr = mapping.GetAddr();
if (addr == MAP_FAILED) {
LOG_ERROR("Failed to reserve space for load");
return false;
}
if (wanted_addr && addr != wanted_addr) {
LOG_ERROR("Failed to obtain fixed address for load");
return false;
}
// Build dlextinfo to load the library into the reserved space, using
// the shared RELRO if supplied and if its start address matches addr.
int relro_fd = -1;
int flags = ANDROID_DLEXT_RESERVED_ADDRESS;
if (wanted_addr && lib_info_obj) {
void* relro_start;
s_lib_info_fields.GetRelroInfo(env, lib_info_obj,
reinterpret_cast<size_t*>(&relro_start),
nullptr, &relro_fd);
if (relro_fd != -1 && relro_start == addr) {
flags |= ANDROID_DLEXT_USE_RELRO;
}
}
AndroidDlextinfo dlextinfo(flags, addr, size, relro_fd);
// Load the library into the reserved space.
const char* path = dlopen_library_path.c_str();
void* handle = nullptr;
if (!AndroidDlopenExt(path, RTLD_NOW, &dlextinfo, &handle)) {
LOG_ERROR("No android_dlopen_ext function found");
return false;
}
if (handle == nullptr) {
LOG_ERROR("android_dlopen_ext: %s", dlerror());
return false;
}
// For https://crbug.com/568880.
//
// Release the scoped mapping. Now that the library has loaded we can no
// longer assume we have control of all of this area. libdl knows addr and
// has loaded the library into some portion of the reservation. It will
// not expect that portion of memory to be arbitrarily unmapped.
mapping.Release();
// After loading we can find the actual size of the library. It should
// be less than the space we reserved for it.
size_t load_size = 0;
size_t min_vaddr = 0;
if (!GetLibraryLoadSize(addr, &load_size, &min_vaddr)) {
LOG_ERROR("Unable to find size for load at %p", addr);
return false;
}
// Trim the reservation mapping to match the library's actual size. Failure
// to resize is not a fatal error. At worst we lose a portion of virtual
// address space that we might otherwise have recovered. Note that trimming
// the mapping here requires that we have already released the scoped
// mapping.
ResizeReservedAddressSpace(addr, size, load_size, min_vaddr);
// Locate and if found then call the loaded library's JNI_OnLoad() function.
using JNI_OnLoadFunctionPtr = int (*)(void* vm, void* reserved);
auto jni_onload =
reinterpret_cast<JNI_OnLoadFunctionPtr>(dlsym(handle, "JNI_OnLoad"));
if (jni_onload != nullptr) {
// Check that JNI_OnLoad returns a usable JNI version.
int jni_version = (*jni_onload)(s_java_vm, nullptr);
if (jni_version < JNI_VERSION_1_4) {
LOG_ERROR("JNI version is invalid: %d", jni_version);
return false;
}
}
// Note the load address and load size in the supplied libinfo object.
const size_t cast_addr = reinterpret_cast<size_t>(addr);
s_lib_info_fields.SetLoadInfo(env, lib_info_obj, cast_addr, load_size);
LOG_INFO("Success loading library %s", dlopen_library_path.c_str());
return true;
}
// Create a shared RELRO file for a library, using android_dlopen_ext().
//
// Loads the library similarly to LoadLibrary() above, by reserving address
// space and then using android_dlopen_ext() to load into the reserved
// area. Adds flags to android_dlopen_ext() to saved the library's RELRO
// memory into the given file path, then unload the library and returns.
//
// Does not call JNI_OnLoad() or otherwise execute any code from the library.
//
// |env| is the current JNI environment handle.
// |clazz| is the static class handle for org.chromium.base.Linker,
// and is ignored here.
// |dlopen_ext_path| is the library identifier (e.g. libfoo.so).
// |load_address| is an explicit load address.
// |relro_path| is the path to the file into which RELRO data is written.
// |lib_info_obj| is a LibInfo handle used to communicate information
// with the Java side.
// Return true on success.
jboolean CreateSharedRelro(JNIEnv* env,
jclass clazz,
jstring dlopen_ext_path,
jlong load_address,
jstring relro_path,
jobject lib_info_obj) {
String dlopen_library_path(env, dlopen_ext_path);
LOG_INFO("Called for %s, at address 0x%llx",
dlopen_library_path.c_str(), load_address);
if (!IsValidAddress(load_address) || load_address == 0) {
LOG_ERROR("Invalid address 0x%llx", load_address);
return false;
}
const size_t size = kAddressSpaceReservationSize;
void* wanted_addr = reinterpret_cast<void*>(load_address);
// Reserve the address space into which we load the library.
ScopedAnonymousMmap mapping(wanted_addr, size);
void* addr = mapping.GetAddr();
if (addr == MAP_FAILED) {
LOG_ERROR("Failed to reserve space for load");
return false;
}
if (addr != wanted_addr) {
LOG_ERROR("Failed to obtain fixed address for load");
return false;
}
// Open the shared RELRO file for write. Overwrites any prior content.
String shared_relro_path(env, relro_path);
const char* filepath = shared_relro_path.c_str();
unlink(filepath);
int relro_fd = open(filepath, O_RDWR | O_CREAT | O_EXCL, S_IRUSR | S_IWUSR);
if (relro_fd == -1) {
LOG_ERROR("open: %s: %s", filepath, strerror(errno));
return false;
}
// Use android_dlopen_ext() to create the shared RELRO.
const int flags = ANDROID_DLEXT_RESERVED_ADDRESS
| ANDROID_DLEXT_WRITE_RELRO;
AndroidDlextinfo dlextinfo(flags, addr, size, relro_fd);
const char* path = dlopen_library_path.c_str();
void* handle = nullptr;
if (!AndroidDlopenExt(path, RTLD_NOW, &dlextinfo, &handle)) {
LOG_ERROR("No android_dlopen_ext function found");
close(relro_fd);
return false;
}
if (handle == nullptr) {
LOG_ERROR("android_dlopen_ext: %s", dlerror());
close(relro_fd);
return false;
}
// For https://crbug.com/568880.
//
// Release the scoped mapping. See comment in LoadLibrary() above for more.
mapping.Release();
// For https://crbug.com/568880.
//
// Unload the library from this address. Calling dlclose() will unmap the
// part of the reservation occupied by the libary, but will leave the
// remainder of the reservation mapped, and we have no effective way of
// unmapping the leftover portions because we don't know where dlclose's
// unmap ended.
//
// For now we live with this. It is a loss of some virtual address space
// (but not actual memory), and because it occurs only once and only in
// the browser process, and never in renderer processes, it is not a
// significant issue.
//
// TODO(simonb): Between mapping.Release() and here, consider calling the
// functions that trim the reservation down to the size of the loaded
// library. This may help recover some or all of the virtual address space
// that is otherwise lost.
dlclose(handle);
// Reopen the shared RELRO fd in read-only mode. This ensures that nothing
// can write to it through the RELRO fd that we return in libinfo.
close(relro_fd);
relro_fd = open(filepath, O_RDONLY);
if (relro_fd == -1) {
LOG_ERROR("open: %s: %s", filepath, strerror(errno));
return false;
}
// Delete the directory entry for the RELRO file. The fd we hold ensures
// that its data remains intact.
if (unlink(filepath) == -1) {
LOG_ERROR("unlink: %s: %s", filepath, strerror(errno));
return false;
}
// Note the shared RELRO fd in the supplied libinfo object. In this
// implementation the RELRO start is set to the library's load address,
// and the RELRO size is unused.
const size_t cast_addr = reinterpret_cast<size_t>(addr);
s_lib_info_fields.SetRelroInfo(env, lib_info_obj, cast_addr, 0, relro_fd);
LOG_INFO("Success creating shared RELRO %s", shared_relro_path.c_str());
return true;
}
const JNINativeMethod kNativeMethods[] = {
{"nativeGetCpuAbi",
"("
")"
"Ljava/lang/String;",
reinterpret_cast<void*>(&GetCpuAbi)},
{"nativeLoadLibrary",
"("
"Ljava/lang/String;"
"J"
"Lorg/chromium/base/library_loader/Linker$LibInfo;"
")"
"Z",
reinterpret_cast<void*>(&LoadLibrary)},
{"nativeCreateSharedRelro",
"("
"Ljava/lang/String;"
"J"
"Ljava/lang/String;"
"Lorg/chromium/base/library_loader/Linker$LibInfo;"
")"
"Z",
reinterpret_cast<void*>(&CreateSharedRelro)},
};
const size_t kNumNativeMethods =
sizeof(kNativeMethods) / sizeof(kNativeMethods[0]);
} // namespace
bool ModernLinkerJNIInit(JavaVM* vm, JNIEnv* env) {
LOG_INFO("Entering");
// Register native methods.
jclass linker_class;
if (!InitClassReference(env,
"org/chromium/base/library_loader/ModernLinker",
&linker_class))
return false;
LOG_INFO("Registering native methods");
if (env->RegisterNatives(linker_class, kNativeMethods, kNumNativeMethods) < 0)
return false;
// Record the Java VM handle.
s_java_vm = vm;
return true;
}
} // namespace chromium_android_linker