naiveproxy/net/cookies/cookie_util.cc

365 lines
13 KiB
C++
Raw Normal View History

2018-12-10 05:59:24 +03:00
// Copyright (c) 2012 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "net/cookies/cookie_util.h"
#include <cstdio>
#include <cstdlib>
#include "base/logging.h"
#include "base/stl_util.h"
#include "base/strings/string_tokenizer.h"
#include "base/strings/string_util.h"
#include "build/build_config.h"
#include "net/base/registry_controlled_domains/registry_controlled_domain.h"
#include "net/base/url_util.h"
#include "url/gurl.h"
namespace net {
namespace cookie_util {
namespace {
base::Time MinNonNullTime() {
return base::Time::FromInternalValue(1);
}
// Tries to assemble a base::Time given a base::Time::Exploded representing a
// UTC calendar date.
//
// If the date falls outside of the range supported internally by
// FromUTCExploded() on the current platform, then the result is:
//
// * Time(1) if it's below the range FromUTCExploded() supports.
// * Time::Max() if it's above the range FromUTCExploded() supports.
bool SaturatedTimeFromUTCExploded(const base::Time::Exploded& exploded,
base::Time* out) {
// Try to calculate the base::Time in the normal fashion.
if (base::Time::FromUTCExploded(exploded, out)) {
// Don't return Time(0) on success.
if (out->is_null())
*out = MinNonNullTime();
return true;
}
// base::Time::FromUTCExploded() has platform-specific limits:
//
// * Windows: Years 1601 - 30827
// * 32-bit POSIX: Years 1970 - 2038
//
// Work around this by returning min/max valid times for times outside those
// ranges when imploding the time is doomed to fail.
//
// Note that the following implementation is NOT perfect. It will accept
// some invalid calendar dates in the out-of-range case.
if (!exploded.HasValidValues())
return false;
if (exploded.year > base::Time::kExplodedMaxYear) {
*out = base::Time::Max();
return true;
}
if (exploded.year < base::Time::kExplodedMinYear) {
*out = MinNonNullTime();
return true;
}
return false;
}
} // namespace
bool DomainIsHostOnly(const std::string& domain_string) {
return (domain_string.empty() || domain_string[0] != '.');
}
std::string GetEffectiveDomain(const std::string& scheme,
const std::string& host) {
if (scheme == "http" || scheme == "https" || scheme == "ws" ||
scheme == "wss") {
return registry_controlled_domains::GetDomainAndRegistry(
host,
registry_controlled_domains::INCLUDE_PRIVATE_REGISTRIES);
}
if (!DomainIsHostOnly(host))
return host.substr(1);
return host;
}
bool GetCookieDomainWithString(const GURL& url,
const std::string& domain_string,
std::string* result) {
const std::string url_host(url.host());
// If no domain was specified in the domain string, default to a host cookie.
// We match IE/Firefox in allowing a domain=IPADDR if it matches the url
// ip address hostname exactly. It should be treated as a host cookie.
if (domain_string.empty() ||
(url.HostIsIPAddress() && url_host == domain_string)) {
*result = url_host;
DCHECK(DomainIsHostOnly(*result));
return true;
}
// Get the normalized domain specified in cookie line.
url::CanonHostInfo ignored;
std::string cookie_domain(CanonicalizeHost(domain_string, &ignored));
if (cookie_domain.empty())
return false;
if (cookie_domain[0] != '.')
cookie_domain = "." + cookie_domain;
// Ensure |url| and |cookie_domain| have the same domain+registry.
const std::string url_scheme(url.scheme());
const std::string url_domain_and_registry(
GetEffectiveDomain(url_scheme, url_host));
if (url_domain_and_registry.empty()) {
// We match IE/Firefox by treating an exact match between the domain
// attribute and the request host to be treated as a host cookie.
if (url_host == domain_string) {
*result = url_host;
DCHECK(DomainIsHostOnly(*result));
return true;
}
// Otherwise, IP addresses/intranet hosts/public suffixes can't set
// domain cookies.
return false;
}
const std::string cookie_domain_and_registry(
GetEffectiveDomain(url_scheme, cookie_domain));
if (url_domain_and_registry != cookie_domain_and_registry)
return false; // Can't set a cookie on a different domain + registry.
// Ensure |url_host| is |cookie_domain| or one of its subdomains. Given that
// we know the domain+registry are the same from the above checks, this is
// basically a simple string suffix check.
const bool is_suffix = (url_host.length() < cookie_domain.length()) ?
(cookie_domain != ("." + url_host)) :
(url_host.compare(url_host.length() - cookie_domain.length(),
cookie_domain.length(), cookie_domain) != 0);
if (is_suffix)
return false;
*result = cookie_domain;
return true;
}
// Parse a cookie expiration time. We try to be lenient, but we need to
// assume some order to distinguish the fields. The basic rules:
// - The month name must be present and prefix the first 3 letters of the
// full month name (jan for January, jun for June).
// - If the year is <= 2 digits, it must occur after the day of month.
// - The time must be of the format hh:mm:ss.
// An average cookie expiration will look something like this:
// Sat, 15-Apr-17 21:01:22 GMT
base::Time ParseCookieExpirationTime(const std::string& time_string) {
static const char* const kMonths[] = {
"jan", "feb", "mar", "apr", "may", "jun",
"jul", "aug", "sep", "oct", "nov", "dec" };
// We want to be pretty liberal, and support most non-ascii and non-digit
// characters as a delimiter. We can't treat : as a delimiter, because it
// is the delimiter for hh:mm:ss, and we want to keep this field together.
// We make sure to include - and +, since they could prefix numbers.
// If the cookie attribute came in in quotes (ex expires="XXX"), the quotes
// will be preserved, and we will get them here. So we make sure to include
// quote characters, and also \ for anything that was internally escaped.
static const char kDelimiters[] = "\t !\"#$%&'()*+,-./;<=>?@[\\]^_`{|}~";
base::Time::Exploded exploded = {0};
base::StringTokenizer tokenizer(time_string, kDelimiters);
bool found_day_of_month = false;
bool found_month = false;
bool found_time = false;
bool found_year = false;
while (tokenizer.GetNext()) {
const std::string token = tokenizer.token();
DCHECK(!token.empty());
bool numerical = base::IsAsciiDigit(token[0]);
// String field
if (!numerical) {
if (!found_month) {
for (size_t i = 0; i < base::size(kMonths); ++i) {
// Match prefix, so we could match January, etc
if (base::StartsWith(token, base::StringPiece(kMonths[i], 3),
base::CompareCase::INSENSITIVE_ASCII)) {
exploded.month = static_cast<int>(i) + 1;
found_month = true;
break;
}
}
} else {
// If we've gotten here, it means we've already found and parsed our
// month, and we have another string, which we would expect to be the
// the time zone name. According to the RFC and my experiments with
// how sites format their expirations, we don't have much of a reason
// to support timezones. We don't want to ever barf on user input,
// but this DCHECK should pass for well-formed data.
// DCHECK(token == "GMT");
}
// Numeric field w/ a colon
} else if (token.find(':') != std::string::npos) {
if (!found_time &&
#ifdef COMPILER_MSVC
sscanf_s(
#else
sscanf(
#endif
token.c_str(), "%2u:%2u:%2u", &exploded.hour,
&exploded.minute, &exploded.second) == 3) {
found_time = true;
} else {
// We should only ever encounter one time-like thing. If we're here,
// it means we've found a second, which shouldn't happen. We keep
// the first. This check should be ok for well-formed input:
// NOTREACHED();
}
// Numeric field
} else {
// Overflow with atoi() is unspecified, so we enforce a max length.
if (!found_day_of_month && token.length() <= 2) {
exploded.day_of_month = atoi(token.c_str());
found_day_of_month = true;
} else if (!found_year && token.length() <= 5) {
exploded.year = atoi(token.c_str());
found_year = true;
} else {
// If we're here, it means we've either found an extra numeric field,
// or a numeric field which was too long. For well-formed input, the
// following check would be reasonable:
// NOTREACHED();
}
}
}
if (!found_day_of_month || !found_month || !found_time || !found_year) {
// We didn't find all of the fields we need. For well-formed input, the
// following check would be reasonable:
// NOTREACHED() << "Cookie parse expiration failed: " << time_string;
return base::Time();
}
// Normalize the year to expand abbreviated years to the full year.
if (exploded.year >= 69 && exploded.year <= 99)
exploded.year += 1900;
if (exploded.year >= 0 && exploded.year <= 68)
exploded.year += 2000;
// Note that clipping the date if it is outside of a platform-specific range
// is permitted by: https://tools.ietf.org/html/rfc6265#section-5.2.1
base::Time result;
if (SaturatedTimeFromUTCExploded(exploded, &result))
return result;
// One of our values was out of expected range. For well-formed input,
// the following check would be reasonable:
// NOTREACHED() << "Cookie exploded expiration failed: " << time_string;
return base::Time();
}
GURL CookieOriginToURL(const std::string& domain, bool is_https) {
if (domain.empty())
return GURL();
const std::string scheme = is_https ? "https" : "http";
const std::string host = domain[0] == '.' ? domain.substr(1) : domain;
return GURL(scheme + "://" + host);
}
bool IsDomainMatch(const std::string& domain, const std::string& host) {
// Can domain match in two ways; as a domain cookie (where the cookie
// domain begins with ".") or as a host cookie (where it doesn't).
// Some consumers of the CookieMonster expect to set cookies on
// URLs like http://.strange.url. To retrieve cookies in this instance,
// we allow matching as a host cookie even when the domain_ starts with
// a period.
if (host == domain)
return true;
// Domain cookie must have an initial ".". To match, it must be
// equal to url's host with initial period removed, or a suffix of
// it.
// Arguably this should only apply to "http" or "https" cookies, but
// extension cookie tests currently use the funtionality, and if we
// ever decide to implement that it should be done by preventing
// such cookies from being set.
if (domain.empty() || domain[0] != '.')
return false;
// The host with a "." prefixed.
if (domain.compare(1, std::string::npos, host) == 0)
return true;
// A pure suffix of the host (ok since we know the domain already
// starts with a ".")
return (host.length() > domain.length() &&
host.compare(host.length() - domain.length(), domain.length(),
domain) == 0);
}
void ParseRequestCookieLine(const std::string& header_value,
ParsedRequestCookies* parsed_cookies) {
std::string::const_iterator i = header_value.begin();
while (i != header_value.end()) {
// Here we are at the beginning of a cookie.
// Eat whitespace.
while (i != header_value.end() && *i == ' ') ++i;
if (i == header_value.end()) return;
// Find cookie name.
std::string::const_iterator cookie_name_beginning = i;
while (i != header_value.end() && *i != '=') ++i;
base::StringPiece cookie_name(cookie_name_beginning, i);
// Find cookie value.
base::StringPiece cookie_value;
// Cookies may have no value, in this case '=' may or may not be there.
if (i != header_value.end() && i + 1 != header_value.end()) {
++i; // Skip '='.
std::string::const_iterator cookie_value_beginning = i;
if (*i == '"') {
++i; // Skip '"'.
while (i != header_value.end() && *i != '"') ++i;
if (i == header_value.end()) return;
++i; // Skip '"'.
cookie_value = base::StringPiece(cookie_value_beginning, i);
// i points to character after '"', potentially a ';'.
} else {
while (i != header_value.end() && *i != ';') ++i;
cookie_value = base::StringPiece(cookie_value_beginning, i);
// i points to ';' or end of string.
}
}
parsed_cookies->push_back(std::make_pair(cookie_name, cookie_value));
// Eat ';'.
if (i != header_value.end()) ++i;
}
}
std::string SerializeRequestCookieLine(
const ParsedRequestCookies& parsed_cookies) {
std::string buffer;
for (ParsedRequestCookies::const_iterator i = parsed_cookies.begin();
i != parsed_cookies.end(); ++i) {
if (!buffer.empty())
buffer.append("; ");
buffer.append(i->first.begin(), i->first.end());
buffer.push_back('=');
buffer.append(i->second.begin(), i->second.end());
}
return buffer;
}
} // namespace cookie_util
} // namespace net