naiveproxy/src/base/metrics/sample_vector.cc

549 lines
19 KiB
C++
Raw Normal View History

2022-03-30 14:51:33 +03:00
// Copyright (c) 2012 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "base/metrics/sample_vector.h"
#include "base/check_op.h"
#include "base/lazy_instance.h"
#include "base/memory/ptr_util.h"
#include "base/metrics/persistent_memory_allocator.h"
#include "base/notreached.h"
#include "base/numerics/safe_conversions.h"
#include "base/strings/stringprintf.h"
#include "base/synchronization/lock.h"
#include "base/threading/platform_thread.h"
// This SampleVector makes use of the single-sample embedded in the base
// HistogramSamples class. If the count is non-zero then there is guaranteed
// (within the bounds of "eventual consistency") to be no allocated external
// storage. Once the full counts storage is allocated, the single-sample must
// be extracted and disabled.
namespace base {
typedef HistogramBase::Count Count;
typedef HistogramBase::Sample Sample;
SampleVectorBase::SampleVectorBase(uint64_t id,
Metadata* meta,
const BucketRanges* bucket_ranges)
: HistogramSamples(id, meta), bucket_ranges_(bucket_ranges) {
CHECK_GE(bucket_ranges_->bucket_count(), 1u);
}
SampleVectorBase::~SampleVectorBase() = default;
void SampleVectorBase::Accumulate(Sample value, Count count) {
const size_t bucket_index = GetBucketIndex(value);
// Handle the single-sample case.
if (!counts()) {
// Try to accumulate the parameters into the single-count entry.
if (AccumulateSingleSample(value, count, bucket_index)) {
// A race condition could lead to a new single-sample being accumulated
// above just after another thread executed the MountCountsStorage below.
// Since it is mounted, it could be mounted elsewhere and have values
// written to it. It's not allowed to have both a single-sample and
// entries in the counts array so move the single-sample.
if (counts())
MoveSingleSampleToCounts();
return;
}
// Need real storage to store both what was in the single-sample plus the
// parameter information.
MountCountsStorageAndMoveSingleSample();
}
// Handle the multi-sample case.
Count new_value =
subtle::NoBarrier_AtomicIncrement(&counts()[bucket_index], count);
IncreaseSumAndCount(strict_cast<int64_t>(count) * value, count);
// TODO(bcwhite) Remove after crbug.com/682680.
Count old_value = new_value - count;
if ((new_value >= 0) != (old_value >= 0) && count > 0)
RecordNegativeSample(SAMPLES_ACCUMULATE_OVERFLOW, count);
}
Count SampleVectorBase::GetCount(Sample value) const {
return GetCountAtIndex(GetBucketIndex(value));
}
Count SampleVectorBase::TotalCount() const {
// Handle the single-sample case.
SingleSample sample = single_sample().Load();
if (sample.count != 0)
return sample.count;
// Handle the multi-sample case.
if (counts() || MountExistingCountsStorage()) {
Count count = 0;
size_t size = counts_size();
const HistogramBase::AtomicCount* counts_array = counts();
for (size_t i = 0; i < size; ++i) {
count += subtle::NoBarrier_Load(&counts_array[i]);
}
return count;
}
// And the no-value case.
return 0;
}
Count SampleVectorBase::GetCountAtIndex(size_t bucket_index) const {
DCHECK(bucket_index < counts_size());
// Handle the single-sample case.
SingleSample sample = single_sample().Load();
if (sample.count != 0)
return sample.bucket == bucket_index ? sample.count : 0;
// Handle the multi-sample case.
if (counts() || MountExistingCountsStorage())
return subtle::NoBarrier_Load(&counts()[bucket_index]);
// And the no-value case.
return 0;
}
std::unique_ptr<SampleCountIterator> SampleVectorBase::Iterator() const {
// Handle the single-sample case.
SingleSample sample = single_sample().Load();
if (sample.count != 0) {
return std::make_unique<SingleSampleIterator>(
bucket_ranges_->range(sample.bucket),
bucket_ranges_->range(sample.bucket + 1), sample.count, sample.bucket);
}
// Handle the multi-sample case.
if (counts() || MountExistingCountsStorage()) {
return std::make_unique<SampleVectorIterator>(counts(), counts_size(),
bucket_ranges_);
}
// And the no-value case.
return std::make_unique<SampleVectorIterator>(nullptr, 0, bucket_ranges_);
}
bool SampleVectorBase::AddSubtractImpl(SampleCountIterator* iter,
HistogramSamples::Operator op) {
// Stop now if there's nothing to do.
if (iter->Done())
return true;
// Get the first value and its index.
HistogramBase::Sample min;
int64_t max;
HistogramBase::Count count;
iter->Get(&min, &max, &count);
size_t dest_index = GetBucketIndex(min);
// The destination must be a superset of the source meaning that though the
// incoming ranges will find an exact match, the incoming bucket-index, if
// it exists, may be offset from the destination bucket-index. Calculate
// that offset of the passed iterator; there are are no overflow checks
// because 2's compliment math will work it out in the end.
//
// Because GetBucketIndex() always returns the same true or false result for
// a given iterator object, |index_offset| is either set here and used below,
// or never set and never used. The compiler doesn't know this, though, which
// is why it's necessary to initialize it to something.
size_t index_offset = 0;
size_t iter_index;
if (iter->GetBucketIndex(&iter_index))
index_offset = dest_index - iter_index;
if (dest_index >= counts_size())
return false;
// Post-increment. Information about the current sample is not available
// after this point.
iter->Next();
// Single-value storage is possible if there is no counts storage and the
// retrieved entry is the only one in the iterator.
if (!counts()) {
if (iter->Done()) {
// Don't call AccumulateSingleSample because that updates sum and count
// which was already done by the caller of this method.
if (single_sample().Accumulate(
dest_index, op == HistogramSamples::ADD ? count : -count)) {
// Handle race-condition that mounted counts storage between above and
// here.
if (counts())
MoveSingleSampleToCounts();
return true;
}
}
// The counts storage will be needed to hold the multiple incoming values.
MountCountsStorageAndMoveSingleSample();
}
// Go through the iterator and add the counts into correct bucket.
while (true) {
// Ensure that the sample's min/max match the ranges min/max.
if (min != bucket_ranges_->range(dest_index) ||
max != bucket_ranges_->range(dest_index + 1)) {
NOTREACHED() << "sample=" << min << "," << max
<< "; range=" << bucket_ranges_->range(dest_index) << ","
<< bucket_ranges_->range(dest_index + 1);
return false;
}
// Sample's bucket matches exactly. Adjust count.
subtle::NoBarrier_AtomicIncrement(
&counts()[dest_index], op == HistogramSamples::ADD ? count : -count);
// Advance to the next iterable sample. See comments above for how
// everything works.
if (iter->Done())
return true;
iter->Get(&min, &max, &count);
if (iter->GetBucketIndex(&iter_index)) {
// Destination bucket is a known offset from the source bucket.
dest_index = iter_index + index_offset;
} else {
// Destination bucket has to be determined anew each time.
dest_index = GetBucketIndex(min);
}
if (dest_index >= counts_size())
return false;
iter->Next();
}
}
// Uses simple binary search or calculates the index directly if it's an "exact"
// linear histogram. This is very general, but there are better approaches if we
// knew that the buckets were linearly distributed.
size_t SampleVectorBase::GetBucketIndex(Sample value) const {
size_t bucket_count = bucket_ranges_->bucket_count();
CHECK_GE(bucket_count, 1u);
CHECK_GE(value, bucket_ranges_->range(0));
CHECK_LT(value, bucket_ranges_->range(bucket_count));
// For "exact" linear histograms, e.g. bucket_count = maximum + 1, their
// minimum is 1 and bucket sizes are 1. Thus, we don't need to binary search
// the bucket index. The bucket index for bucket |value| is just the |value|.
Sample maximum = bucket_ranges_->range(bucket_count - 1);
if (maximum == static_cast<Sample>(bucket_count - 1)) {
// |value| is in the underflow bucket.
if (value < 1)
return 0;
// |value| is in the overflow bucket.
if (value > maximum)
return bucket_count - 1;
return static_cast<size_t>(value);
}
size_t under = 0;
size_t over = bucket_count;
size_t mid;
do {
DCHECK_GE(over, under);
mid = under + (over - under)/2;
if (mid == under)
break;
if (bucket_ranges_->range(mid) <= value)
under = mid;
else
over = mid;
} while (true);
DCHECK_LE(bucket_ranges_->range(mid), value);
CHECK_GT(bucket_ranges_->range(mid + 1), value);
return mid;
}
void SampleVectorBase::MoveSingleSampleToCounts() {
DCHECK(counts());
// Disable the single-sample since there is now counts storage for the data.
SingleSample sample = single_sample().Extract(/*disable=*/true);
// Stop here if there is no "count" as trying to find the bucket index of
// an invalid (including zero) "value" will crash.
if (sample.count == 0)
return;
// Move the value into storage. Sum and redundant-count already account
// for this entry so no need to call IncreaseSumAndCount().
subtle::NoBarrier_AtomicIncrement(&counts()[sample.bucket], sample.count);
}
void SampleVectorBase::MountCountsStorageAndMoveSingleSample() {
// There are many SampleVector objects and the lock is needed very
// infrequently (just when advancing from single-sample to multi-sample) so
// define a single, global lock that all can use. This lock only prevents
// concurrent entry into the code below; access and updates to |counts_|
// still requires atomic operations.
static LazyInstance<Lock>::Leaky counts_lock = LAZY_INSTANCE_INITIALIZER;
if (!counts_.load(std::memory_order_relaxed)) {
AutoLock lock(counts_lock.Get());
if (!counts_.load(std::memory_order_relaxed)) {
// Create the actual counts storage while the above lock is acquired.
HistogramBase::Count* counts = CreateCountsStorageWhileLocked();
DCHECK(counts);
// Point |counts_| to the newly created storage. This is done while
// locked to prevent possible concurrent calls to CreateCountsStorage
// but, between that call and here, other threads could notice the
// existence of the storage and race with this to set_counts(). That's
// okay because (a) it's atomic and (b) it always writes the same value.
set_counts(counts);
}
}
// Move any single-sample into the newly mounted storage.
MoveSingleSampleToCounts();
}
SampleVector::SampleVector(const BucketRanges* bucket_ranges)
: SampleVector(0, bucket_ranges) {}
SampleVector::SampleVector(uint64_t id, const BucketRanges* bucket_ranges)
: SampleVectorBase(id, new LocalMetadata(), bucket_ranges) {}
SampleVector::~SampleVector() {
delete static_cast<LocalMetadata*>(meta());
}
bool SampleVector::MountExistingCountsStorage() const {
// There is never any existing storage other than what is already in use.
return counts() != nullptr;
}
std::string SampleVector::GetAsciiHeader(StringPiece histogram_name,
int32_t flags) const {
Count sample_count = TotalCount();
std::string output;
StringAppendF(&output, "Histogram: %.*s recorded %d samples",
static_cast<int>(histogram_name.size()), histogram_name.data(),
sample_count);
if (sample_count == 0) {
DCHECK_EQ(sum(), 0);
} else {
double mean = static_cast<float>(sum()) / sample_count;
StringAppendF(&output, ", mean = %.1f", mean);
}
if (flags)
StringAppendF(&output, " (flags = 0x%x)", flags);
return output;
}
std::string SampleVector::GetAsciiBody() const {
Count sample_count = TotalCount();
// Prepare to normalize graphical rendering of bucket contents.
double max_size = 0;
double scaling_factor = 1;
max_size = GetPeakBucketSize();
// Scale histogram bucket counts to take at most 72 characters.
// Note: Keep in sync w/ kLineLength histogram_samples.cc
const double kLineLength = 72;
if (max_size > kLineLength)
scaling_factor = kLineLength / max_size;
// Calculate space needed to print bucket range numbers. Leave room to print
// nearly the largest bucket range without sliding over the histogram.
uint32_t largest_non_empty_bucket = bucket_count() - 1;
while (0 == GetCountAtIndex(largest_non_empty_bucket)) {
if (0 == largest_non_empty_bucket)
break; // All buckets are empty.
--largest_non_empty_bucket;
}
// Calculate largest print width needed for any of our bucket range displays.
size_t print_width = 1;
for (uint32_t i = 0; i < bucket_count(); ++i) {
if (GetCountAtIndex(i)) {
size_t width =
GetSimpleAsciiBucketRange(bucket_ranges()->range(i)).size() + 1;
if (width > print_width)
print_width = width;
}
}
int64_t remaining = sample_count;
int64_t past = 0;
std::string output;
// Output the actual histogram graph.
for (uint32_t i = 0; i < bucket_count(); ++i) {
Count current = GetCountAtIndex(i);
remaining -= current;
std::string range = GetSimpleAsciiBucketRange(bucket_ranges()->range(i));
output.append(range);
for (size_t j = 0; range.size() + j < print_width + 1; ++j)
output.push_back(' ');
if (0 == current && i < bucket_count() - 1 && 0 == GetCountAtIndex(i + 1)) {
while (i < bucket_count() - 1 && 0 == GetCountAtIndex(i + 1)) {
++i;
}
output.append("... \n");
continue; // No reason to plot emptiness.
}
Count current_size = round(current * scaling_factor);
WriteAsciiBucketGraph(current_size, kLineLength, &output);
WriteAsciiBucketContext(past, current, remaining, i, &output);
output.append("\n");
past += current;
}
DCHECK_EQ(sample_count, past);
return output;
}
double SampleVector::GetPeakBucketSize() const {
Count max = 0;
for (uint32_t i = 0; i < bucket_count(); ++i) {
Count current = GetCountAtIndex(i);
if (current > max)
max = current;
}
return max;
}
void SampleVector::WriteAsciiBucketContext(int64_t past,
Count current,
int64_t remaining,
uint32_t current_bucket_index,
std::string* output) const {
double scaled_sum = (past + current + remaining) / 100.0;
WriteAsciiBucketValue(current, scaled_sum, output);
if (0 < current_bucket_index) {
double percentage = past / scaled_sum;
StringAppendF(output, " {%3.1f%%}", percentage);
}
}
HistogramBase::AtomicCount* SampleVector::CreateCountsStorageWhileLocked() {
local_counts_.resize(counts_size());
return &local_counts_[0];
}
PersistentSampleVector::PersistentSampleVector(
uint64_t id,
const BucketRanges* bucket_ranges,
Metadata* meta,
const DelayedPersistentAllocation& counts)
: SampleVectorBase(id, meta, bucket_ranges), persistent_counts_(counts) {
// Only mount the full storage if the single-sample has been disabled.
// Otherwise, it is possible for this object instance to start using (empty)
// storage that was created incidentally while another instance continues to
// update to the single sample. This "incidental creation" can happen because
// the memory is a DelayedPersistentAllocation which allows multiple memory
// blocks within it and applies an all-or-nothing approach to the allocation.
// Thus, a request elsewhere for one of the _other_ blocks would make _this_
// block available even though nothing has explicitly requested it.
//
// Note that it's not possible for the ctor to mount existing storage and
// move any single-sample to it because sometimes the persistent memory is
// read-only. Only non-const methods (which assume that memory is read/write)
// can do that.
if (single_sample().IsDisabled()) {
bool success = MountExistingCountsStorage();
DCHECK(success);
}
}
PersistentSampleVector::~PersistentSampleVector() = default;
bool PersistentSampleVector::MountExistingCountsStorage() const {
// There is no early exit if counts is not yet mounted because, given that
// this is a virtual function, it's more efficient to do that at the call-
// site. There is no danger, however, should this get called anyway (perhaps
// because of a race condition) because at worst the |counts_| value would
// be over-written (in an atomic manner) with the exact same address.
if (!persistent_counts_.reference())
return false; // Nothing to mount.
// Mount the counts array in position.
set_counts(
static_cast<HistogramBase::AtomicCount*>(persistent_counts_.Get()));
// The above shouldn't fail but can if the data is corrupt or incomplete.
return counts() != nullptr;
}
HistogramBase::AtomicCount*
PersistentSampleVector::CreateCountsStorageWhileLocked() {
void* mem = persistent_counts_.Get();
if (!mem) {
// The above shouldn't fail but can if Bad Things(tm) are occurring in the
// persistent allocator. Crashing isn't a good option so instead just
// allocate something from the heap and return that. There will be no
// sharing or persistence but worse things are already happening.
return new HistogramBase::AtomicCount[counts_size()];
}
return static_cast<HistogramBase::AtomicCount*>(mem);
}
SampleVectorIterator::SampleVectorIterator(
const std::vector<HistogramBase::AtomicCount>* counts,
const BucketRanges* bucket_ranges)
: counts_(&(*counts)[0]),
counts_size_(counts->size()),
bucket_ranges_(bucket_ranges),
index_(0) {
DCHECK_GE(bucket_ranges_->bucket_count(), counts_size_);
SkipEmptyBuckets();
}
SampleVectorIterator::SampleVectorIterator(
const HistogramBase::AtomicCount* counts,
size_t counts_size,
const BucketRanges* bucket_ranges)
: counts_(counts),
counts_size_(counts_size),
bucket_ranges_(bucket_ranges),
index_(0) {
DCHECK_GE(bucket_ranges_->bucket_count(), counts_size_);
SkipEmptyBuckets();
}
SampleVectorIterator::~SampleVectorIterator() = default;
bool SampleVectorIterator::Done() const {
return index_ >= counts_size_;
}
void SampleVectorIterator::Next() {
DCHECK(!Done());
index_++;
SkipEmptyBuckets();
}
void SampleVectorIterator::Get(HistogramBase::Sample* min,
int64_t* max,
HistogramBase::Count* count) const {
DCHECK(!Done());
if (min != nullptr)
*min = bucket_ranges_->range(index_);
if (max != nullptr)
*max = strict_cast<int64_t>(bucket_ranges_->range(index_ + 1));
if (count != nullptr)
*count = subtle::NoBarrier_Load(&counts_[index_]);
}
bool SampleVectorIterator::GetBucketIndex(size_t* index) const {
DCHECK(!Done());
if (index != nullptr)
*index = index_;
return true;
}
void SampleVectorIterator::SkipEmptyBuckets() {
if (Done())
return;
while (index_ < counts_size_) {
if (subtle::NoBarrier_Load(&counts_[index_]) != 0)
return;
index_++;
}
}
} // namespace base