mirror of
https://github.com/klzgrad/naiveproxy.git
synced 2024-12-01 01:36:09 +03:00
973 lines
36 KiB
C++
973 lines
36 KiB
C++
|
// Copyright (c) 2012 The Chromium Authors. All rights reserved.
|
||
|
// Use of this source code is governed by a BSD-style license that can be
|
||
|
// found in the LICENSE file.
|
||
|
|
||
|
#include "net/cert/cert_verify_proc_nss.h"
|
||
|
|
||
|
#include <cert.h>
|
||
|
#include <nss.h>
|
||
|
#include <prerror.h>
|
||
|
#include <secerr.h>
|
||
|
#include <sechash.h>
|
||
|
#include <sslerr.h>
|
||
|
|
||
|
#include <memory>
|
||
|
#include <string>
|
||
|
#include <vector>
|
||
|
|
||
|
#include "base/logging.h"
|
||
|
#include "base/macros.h"
|
||
|
#include "build/build_config.h"
|
||
|
#include "crypto/nss_util.h"
|
||
|
#include "crypto/scoped_nss_types.h"
|
||
|
#include "crypto/sha2.h"
|
||
|
#include "net/base/net_errors.h"
|
||
|
#include "net/cert/asn1_util.h"
|
||
|
#include "net/cert/cert_status_flags.h"
|
||
|
#include "net/cert/cert_verifier.h"
|
||
|
#include "net/cert/cert_verify_result.h"
|
||
|
#include "net/cert/crl_set.h"
|
||
|
#include "net/cert/ev_root_ca_metadata.h"
|
||
|
#include "net/cert/known_roots_nss.h"
|
||
|
#include "net/cert/x509_certificate.h"
|
||
|
#include "net/cert/x509_util_nss.h"
|
||
|
|
||
|
#include <dlfcn.h>
|
||
|
|
||
|
namespace net {
|
||
|
|
||
|
namespace {
|
||
|
|
||
|
typedef std::unique_ptr<
|
||
|
CERTCertificatePolicies,
|
||
|
crypto::NSSDestroyer<CERTCertificatePolicies,
|
||
|
CERT_DestroyCertificatePoliciesExtension>>
|
||
|
ScopedCERTCertificatePolicies;
|
||
|
|
||
|
typedef std::unique_ptr<
|
||
|
CERTCertList,
|
||
|
crypto::NSSDestroyer<CERTCertList, CERT_DestroyCertList>>
|
||
|
ScopedCERTCertList;
|
||
|
|
||
|
// ScopedCERTValOutParam manages destruction of values in the CERTValOutParam
|
||
|
// array that cvout points to. cvout must be initialized as passed to
|
||
|
// CERT_PKIXVerifyCert, so that the array must be terminated with
|
||
|
// cert_po_end type.
|
||
|
// When it goes out of scope, it destroys values of cert_po_trustAnchor
|
||
|
// and cert_po_certList types, but doesn't release the array itself.
|
||
|
class ScopedCERTValOutParam {
|
||
|
public:
|
||
|
explicit ScopedCERTValOutParam(CERTValOutParam* cvout) : cvout_(cvout) {}
|
||
|
|
||
|
~ScopedCERTValOutParam() {
|
||
|
Clear();
|
||
|
}
|
||
|
|
||
|
// Free the internal resources, but do not release the array itself.
|
||
|
void Clear() {
|
||
|
if (cvout_ == NULL)
|
||
|
return;
|
||
|
for (CERTValOutParam *p = cvout_; p->type != cert_po_end; p++) {
|
||
|
switch (p->type) {
|
||
|
case cert_po_trustAnchor:
|
||
|
if (p->value.pointer.cert) {
|
||
|
CERT_DestroyCertificate(p->value.pointer.cert);
|
||
|
p->value.pointer.cert = NULL;
|
||
|
}
|
||
|
break;
|
||
|
case cert_po_certList:
|
||
|
if (p->value.pointer.chain) {
|
||
|
CERT_DestroyCertList(p->value.pointer.chain);
|
||
|
p->value.pointer.chain = NULL;
|
||
|
}
|
||
|
break;
|
||
|
default:
|
||
|
break;
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
private:
|
||
|
CERTValOutParam* cvout_;
|
||
|
|
||
|
DISALLOW_COPY_AND_ASSIGN(ScopedCERTValOutParam);
|
||
|
};
|
||
|
|
||
|
// Map PORT_GetError() return values to our network error codes.
|
||
|
int MapSecurityError(int err) {
|
||
|
switch (err) {
|
||
|
case PR_DIRECTORY_LOOKUP_ERROR: // DNS lookup error.
|
||
|
return ERR_NAME_NOT_RESOLVED;
|
||
|
case SEC_ERROR_INVALID_ARGS:
|
||
|
return ERR_INVALID_ARGUMENT;
|
||
|
case SSL_ERROR_BAD_CERT_DOMAIN:
|
||
|
return ERR_CERT_COMMON_NAME_INVALID;
|
||
|
case SEC_ERROR_INVALID_TIME:
|
||
|
case SEC_ERROR_EXPIRED_CERTIFICATE:
|
||
|
case SEC_ERROR_EXPIRED_ISSUER_CERTIFICATE:
|
||
|
return ERR_CERT_DATE_INVALID;
|
||
|
case SEC_ERROR_UNKNOWN_ISSUER:
|
||
|
case SEC_ERROR_UNTRUSTED_ISSUER:
|
||
|
case SEC_ERROR_CA_CERT_INVALID:
|
||
|
case SEC_ERROR_APPLICATION_CALLBACK_ERROR: // Rejected by
|
||
|
// chain_verify_callback.
|
||
|
return ERR_CERT_AUTHORITY_INVALID;
|
||
|
// TODO(port): map ERR_CERT_NO_REVOCATION_MECHANISM.
|
||
|
case SEC_ERROR_OCSP_BAD_HTTP_RESPONSE:
|
||
|
case SEC_ERROR_OCSP_SERVER_ERROR:
|
||
|
return ERR_CERT_UNABLE_TO_CHECK_REVOCATION;
|
||
|
case SEC_ERROR_REVOKED_CERTIFICATE:
|
||
|
case SEC_ERROR_UNTRUSTED_CERT: // Treat as revoked.
|
||
|
return ERR_CERT_REVOKED;
|
||
|
case SEC_ERROR_CERT_NOT_IN_NAME_SPACE:
|
||
|
return ERR_CERT_NAME_CONSTRAINT_VIOLATION;
|
||
|
case SEC_ERROR_BAD_DER:
|
||
|
case SEC_ERROR_BAD_SIGNATURE:
|
||
|
case SEC_ERROR_CERT_NOT_VALID:
|
||
|
// TODO(port): add an ERR_CERT_WRONG_USAGE error code.
|
||
|
case SEC_ERROR_CERT_USAGES_INVALID:
|
||
|
case SEC_ERROR_INADEQUATE_KEY_USAGE: // Key usage.
|
||
|
case SEC_ERROR_INADEQUATE_CERT_TYPE: // Extended key usage and whether
|
||
|
// the certificate is a CA.
|
||
|
case SEC_ERROR_POLICY_VALIDATION_FAILED:
|
||
|
case SEC_ERROR_PATH_LEN_CONSTRAINT_INVALID:
|
||
|
case SEC_ERROR_UNKNOWN_CRITICAL_EXTENSION:
|
||
|
case SEC_ERROR_EXTENSION_VALUE_INVALID:
|
||
|
return ERR_CERT_INVALID;
|
||
|
case SEC_ERROR_CERT_SIGNATURE_ALGORITHM_DISABLED:
|
||
|
return ERR_CERT_WEAK_SIGNATURE_ALGORITHM;
|
||
|
default:
|
||
|
LOG(WARNING) << "Unknown error " << err << " mapped to net::ERR_FAILED";
|
||
|
return ERR_FAILED;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
// Map PORT_GetError() return values to our cert status flags.
|
||
|
CertStatus MapCertErrorToCertStatus(int err) {
|
||
|
int net_error = MapSecurityError(err);
|
||
|
return MapNetErrorToCertStatus(net_error);
|
||
|
}
|
||
|
|
||
|
// Saves some information about the certificate chain cert_list in
|
||
|
// *verify_result. The caller MUST initialize *verify_result before calling
|
||
|
// this function.
|
||
|
// Note that cert_list[0] is the end entity certificate.
|
||
|
void GetCertChainInfo(CERTCertList* cert_list,
|
||
|
CERTCertificate* root_cert,
|
||
|
CertVerifyResult* verify_result) {
|
||
|
DCHECK(cert_list);
|
||
|
|
||
|
CERTCertificate* verified_cert = NULL;
|
||
|
std::vector<CERTCertificate*> verified_chain;
|
||
|
size_t i = 0;
|
||
|
for (CERTCertListNode* node = CERT_LIST_HEAD(cert_list);
|
||
|
!CERT_LIST_END(node, cert_list);
|
||
|
node = CERT_LIST_NEXT(node), ++i) {
|
||
|
if (i == 0) {
|
||
|
verified_cert = node->cert;
|
||
|
} else {
|
||
|
// Because of an NSS bug, CERT_PKIXVerifyCert may chain a self-signed
|
||
|
// certificate of a root CA to another certificate of the same root CA
|
||
|
// key. Detect that error and ignore the root CA certificate.
|
||
|
// See https://bugzilla.mozilla.org/show_bug.cgi?id=721288.
|
||
|
if (node->cert->isRoot) {
|
||
|
// NOTE: isRoot doesn't mean the certificate is a trust anchor. It
|
||
|
// means the certificate is self-signed. Here we assume isRoot only
|
||
|
// implies the certificate is self-issued.
|
||
|
CERTCertListNode* next_node = CERT_LIST_NEXT(node);
|
||
|
CERTCertificate* next_cert;
|
||
|
if (!CERT_LIST_END(next_node, cert_list)) {
|
||
|
next_cert = next_node->cert;
|
||
|
} else {
|
||
|
next_cert = root_cert;
|
||
|
}
|
||
|
// Test that |node->cert| is actually a self-signed certificate
|
||
|
// whose key is equal to |next_cert|, and not a self-issued
|
||
|
// certificate signed by another key of the same CA.
|
||
|
if (next_cert && SECITEM_ItemsAreEqual(&node->cert->derPublicKey,
|
||
|
&next_cert->derPublicKey)) {
|
||
|
continue;
|
||
|
}
|
||
|
}
|
||
|
verified_chain.push_back(node->cert);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
if (root_cert)
|
||
|
verified_chain.push_back(root_cert);
|
||
|
|
||
|
scoped_refptr<X509Certificate> verified_cert_with_chain =
|
||
|
x509_util::CreateX509CertificateFromCERTCertificate(verified_cert,
|
||
|
verified_chain);
|
||
|
if (verified_cert_with_chain)
|
||
|
verify_result->verified_cert = std::move(verified_cert_with_chain);
|
||
|
else
|
||
|
verify_result->cert_status |= CERT_STATUS_INVALID;
|
||
|
}
|
||
|
|
||
|
// Returns true if the given certificate is one of the additional trust anchors.
|
||
|
bool IsAdditionalTrustAnchor(CERTCertList* additional_trust_anchors,
|
||
|
CERTCertificate* root) {
|
||
|
if (!additional_trust_anchors || !root)
|
||
|
return false;
|
||
|
for (CERTCertListNode* node = CERT_LIST_HEAD(additional_trust_anchors);
|
||
|
!CERT_LIST_END(node, additional_trust_anchors);
|
||
|
node = CERT_LIST_NEXT(node)) {
|
||
|
if (CERT_CompareCerts(node->cert, root))
|
||
|
return true;
|
||
|
}
|
||
|
return false;
|
||
|
}
|
||
|
|
||
|
enum CRLSetResult {
|
||
|
kCRLSetOk,
|
||
|
kCRLSetRevoked,
|
||
|
kCRLSetUnknown,
|
||
|
};
|
||
|
|
||
|
// CheckRevocationWithCRLSet attempts to check each element of |cert_list|
|
||
|
// against |crl_set|. It returns:
|
||
|
// kCRLSetRevoked: if any element of the chain is known to have been revoked.
|
||
|
// kCRLSetUnknown: if there is no fresh information about the leaf
|
||
|
// certificate in the chain or if the CRLSet has expired.
|
||
|
//
|
||
|
// Only the leaf certificate is considered for coverage because some
|
||
|
// intermediates have CRLs with no revocations (after filtering) and
|
||
|
// those CRLs are pruned from the CRLSet at generation time. This means
|
||
|
// that some EV sites would otherwise take the hit of an OCSP lookup for
|
||
|
// no reason.
|
||
|
// kCRLSetOk: otherwise.
|
||
|
CRLSetResult CheckRevocationWithCRLSet(const CERTCertList* cert_list,
|
||
|
CERTCertificate* root,
|
||
|
CRLSet* crl_set) {
|
||
|
std::vector<CERTCertificate*> certs;
|
||
|
|
||
|
if (cert_list) {
|
||
|
for (CERTCertListNode* node = CERT_LIST_HEAD(cert_list);
|
||
|
!CERT_LIST_END(node, cert_list);
|
||
|
node = CERT_LIST_NEXT(node)) {
|
||
|
certs.push_back(node->cert);
|
||
|
}
|
||
|
}
|
||
|
if (root)
|
||
|
certs.push_back(root);
|
||
|
|
||
|
// Set to true if any errors are found, which will cause such chains to not be
|
||
|
// treated as covered by the CRLSet.
|
||
|
bool error = false;
|
||
|
// Set to the coverage state of the previous certificate. As the certificates
|
||
|
// are iterated over from root to leaf, at the end of the iteration, this
|
||
|
// indicates the coverage state of the leaf certificate.
|
||
|
bool last_covered = false;
|
||
|
|
||
|
// We iterate from the root certificate down to the leaf, keeping track of
|
||
|
// the issuer's SPKI at each step.
|
||
|
std::string issuer_spki_hash;
|
||
|
for (std::vector<CERTCertificate*>::reverse_iterator i = certs.rbegin();
|
||
|
i != certs.rend(); ++i) {
|
||
|
CERTCertificate* cert = *i;
|
||
|
|
||
|
base::StringPiece der(reinterpret_cast<char*>(cert->derCert.data),
|
||
|
cert->derCert.len);
|
||
|
|
||
|
base::StringPiece spki;
|
||
|
if (!asn1::ExtractSPKIFromDERCert(der, &spki)) {
|
||
|
NOTREACHED();
|
||
|
error = true;
|
||
|
continue;
|
||
|
}
|
||
|
const std::string spki_hash = crypto::SHA256HashString(spki);
|
||
|
|
||
|
base::StringPiece serial_number = base::StringPiece(
|
||
|
reinterpret_cast<char*>(cert->serialNumber.data),
|
||
|
cert->serialNumber.len);
|
||
|
|
||
|
CRLSet::Result result = crl_set->CheckSPKI(spki_hash);
|
||
|
|
||
|
if (result != CRLSet::REVOKED && !issuer_spki_hash.empty())
|
||
|
result = crl_set->CheckSerial(serial_number, issuer_spki_hash);
|
||
|
|
||
|
issuer_spki_hash = spki_hash;
|
||
|
|
||
|
switch (result) {
|
||
|
case CRLSet::REVOKED:
|
||
|
return kCRLSetRevoked;
|
||
|
case CRLSet::UNKNOWN:
|
||
|
last_covered = false;
|
||
|
continue;
|
||
|
case CRLSet::GOOD:
|
||
|
last_covered = true;
|
||
|
continue;
|
||
|
default:
|
||
|
NOTREACHED();
|
||
|
error = true;
|
||
|
continue;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
if (error || !last_covered || crl_set->IsExpired())
|
||
|
return kCRLSetUnknown;
|
||
|
return kCRLSetOk;
|
||
|
}
|
||
|
|
||
|
// Arguments for CheckChainRevocationWithCRLSet that are curried within the
|
||
|
// CERTChainVerifyCallback's isChainValidArg.
|
||
|
struct CheckChainRevocationArgs {
|
||
|
// The CRLSet to evaluate against.
|
||
|
CRLSet* crl_set = nullptr;
|
||
|
|
||
|
// The next callback to invoke, if the CRLSet does not report any errors.
|
||
|
CERTChainVerifyCallback* next_callback = nullptr;
|
||
|
|
||
|
// Indicates that the application callback failure was due to a CRLSet
|
||
|
// revocation, rather than due to |next_callback| rejecting it. This is
|
||
|
// used to map the error back to the proper caller-visible error code.
|
||
|
bool was_revoked = false;
|
||
|
};
|
||
|
|
||
|
SECStatus CheckChainRevocationWithCRLSet(void* is_chain_valid_arg,
|
||
|
const CERTCertList* current_chain,
|
||
|
PRBool* chain_ok) {
|
||
|
CHECK(is_chain_valid_arg);
|
||
|
|
||
|
CheckChainRevocationArgs* args =
|
||
|
static_cast<CheckChainRevocationArgs*>(is_chain_valid_arg);
|
||
|
|
||
|
CRLSetResult crlset_result = kCRLSetUnknown;
|
||
|
if (args->crl_set) {
|
||
|
crlset_result =
|
||
|
CheckRevocationWithCRLSet(current_chain, nullptr, args->crl_set);
|
||
|
}
|
||
|
|
||
|
if (crlset_result == kCRLSetRevoked) {
|
||
|
args->was_revoked = true;
|
||
|
*chain_ok = PR_FALSE;
|
||
|
return SECSuccess;
|
||
|
}
|
||
|
args->was_revoked = false;
|
||
|
|
||
|
*chain_ok = PR_TRUE;
|
||
|
if (!args->next_callback || !args->next_callback->isChainValid)
|
||
|
return SECSuccess;
|
||
|
|
||
|
return (*args->next_callback->isChainValid)(
|
||
|
args->next_callback->isChainValidArg, current_chain, chain_ok);
|
||
|
}
|
||
|
|
||
|
// Forward declarations.
|
||
|
SECStatus RetryPKIXVerifyCertWithWorkarounds(
|
||
|
CERTCertificate* cert_handle, int num_policy_oids,
|
||
|
bool cert_io_enabled, std::vector<CERTValInParam>* cvin,
|
||
|
CERTValOutParam* cvout);
|
||
|
SECOidTag GetFirstCertPolicy(CERTCertificate* cert_handle);
|
||
|
|
||
|
// Call CERT_PKIXVerifyCert for the cert_handle.
|
||
|
// Verification results are stored in an array of CERTValOutParam.
|
||
|
// If |hard_fail| is true, and no policy_oids are supplied (eg: EV is NOT being
|
||
|
// checked), then the failure to obtain valid CRL/OCSP information for all
|
||
|
// certificates that contain CRL/OCSP URLs will cause the certificate to be
|
||
|
// treated as if it was revoked. Since failures may be caused by transient
|
||
|
// network failures or by malicious attackers, in general, hard_fail should be
|
||
|
// false.
|
||
|
// If policy_oids is not NULL and num_policy_oids is positive, policies
|
||
|
// are also checked.
|
||
|
// additional_trust_anchors is an optional list of certificates that can be
|
||
|
// trusted as anchors when building a certificate chain.
|
||
|
// Caller must initialize cvout before calling this function.
|
||
|
SECStatus PKIXVerifyCert(CERTCertificate* cert_handle,
|
||
|
bool check_revocation,
|
||
|
bool hard_fail,
|
||
|
bool cert_io_enabled,
|
||
|
const SECOidTag* policy_oids,
|
||
|
int num_policy_oids,
|
||
|
CERTCertList* additional_trust_anchors,
|
||
|
CERTChainVerifyCallback* chain_verify_callback,
|
||
|
CERTValOutParam* cvout) {
|
||
|
bool use_crl = check_revocation;
|
||
|
bool use_ocsp = check_revocation;
|
||
|
|
||
|
PRUint64 revocation_method_flags =
|
||
|
CERT_REV_M_DO_NOT_TEST_USING_THIS_METHOD |
|
||
|
CERT_REV_M_ALLOW_NETWORK_FETCHING |
|
||
|
CERT_REV_M_IGNORE_IMPLICIT_DEFAULT_SOURCE |
|
||
|
CERT_REV_M_IGNORE_MISSING_FRESH_INFO |
|
||
|
CERT_REV_M_STOP_TESTING_ON_FRESH_INFO;
|
||
|
PRUint64 revocation_method_independent_flags =
|
||
|
CERT_REV_MI_TEST_ALL_LOCAL_INFORMATION_FIRST;
|
||
|
if (check_revocation && policy_oids && num_policy_oids > 0) {
|
||
|
// EV verification requires revocation checking. Consider the certificate
|
||
|
// revoked if we don't have revocation info.
|
||
|
// TODO(wtc): Add a bool parameter to expressly specify we're doing EV
|
||
|
// verification or we want strict revocation flags.
|
||
|
revocation_method_flags |= CERT_REV_M_REQUIRE_INFO_ON_MISSING_SOURCE;
|
||
|
revocation_method_independent_flags |=
|
||
|
CERT_REV_MI_REQUIRE_SOME_FRESH_INFO_AVAILABLE;
|
||
|
} else if (check_revocation && hard_fail) {
|
||
|
revocation_method_flags |= CERT_REV_M_FAIL_ON_MISSING_FRESH_INFO;
|
||
|
revocation_method_independent_flags |=
|
||
|
CERT_REV_MI_REQUIRE_SOME_FRESH_INFO_AVAILABLE;
|
||
|
} else {
|
||
|
revocation_method_flags |= CERT_REV_M_SKIP_TEST_ON_MISSING_SOURCE;
|
||
|
revocation_method_independent_flags |=
|
||
|
CERT_REV_MI_NO_OVERALL_INFO_REQUIREMENT;
|
||
|
}
|
||
|
PRUint64 method_flags[2];
|
||
|
method_flags[cert_revocation_method_crl] = revocation_method_flags;
|
||
|
method_flags[cert_revocation_method_ocsp] = revocation_method_flags;
|
||
|
|
||
|
if (use_crl) {
|
||
|
method_flags[cert_revocation_method_crl] |=
|
||
|
CERT_REV_M_TEST_USING_THIS_METHOD;
|
||
|
}
|
||
|
if (use_ocsp) {
|
||
|
method_flags[cert_revocation_method_ocsp] |=
|
||
|
CERT_REV_M_TEST_USING_THIS_METHOD;
|
||
|
}
|
||
|
|
||
|
CERTRevocationMethodIndex preferred_revocation_methods[1];
|
||
|
if (use_ocsp) {
|
||
|
preferred_revocation_methods[0] = cert_revocation_method_ocsp;
|
||
|
} else {
|
||
|
preferred_revocation_methods[0] = cert_revocation_method_crl;
|
||
|
}
|
||
|
|
||
|
CERTRevocationFlags revocation_flags;
|
||
|
revocation_flags.leafTests.number_of_defined_methods =
|
||
|
arraysize(method_flags);
|
||
|
revocation_flags.leafTests.cert_rev_flags_per_method = method_flags;
|
||
|
revocation_flags.leafTests.number_of_preferred_methods =
|
||
|
arraysize(preferred_revocation_methods);
|
||
|
revocation_flags.leafTests.preferred_methods = preferred_revocation_methods;
|
||
|
revocation_flags.leafTests.cert_rev_method_independent_flags =
|
||
|
revocation_method_independent_flags;
|
||
|
|
||
|
revocation_flags.chainTests.number_of_defined_methods =
|
||
|
arraysize(method_flags);
|
||
|
revocation_flags.chainTests.cert_rev_flags_per_method = method_flags;
|
||
|
revocation_flags.chainTests.number_of_preferred_methods =
|
||
|
arraysize(preferred_revocation_methods);
|
||
|
revocation_flags.chainTests.preferred_methods = preferred_revocation_methods;
|
||
|
revocation_flags.chainTests.cert_rev_method_independent_flags =
|
||
|
revocation_method_independent_flags;
|
||
|
|
||
|
|
||
|
std::vector<CERTValInParam> cvin;
|
||
|
cvin.reserve(7);
|
||
|
CERTValInParam in_param;
|
||
|
in_param.type = cert_pi_revocationFlags;
|
||
|
in_param.value.pointer.revocation = &revocation_flags;
|
||
|
cvin.push_back(in_param);
|
||
|
if (policy_oids && num_policy_oids > 0) {
|
||
|
in_param.type = cert_pi_policyOID;
|
||
|
in_param.value.arraySize = num_policy_oids;
|
||
|
in_param.value.array.oids = policy_oids;
|
||
|
cvin.push_back(in_param);
|
||
|
}
|
||
|
if (additional_trust_anchors) {
|
||
|
in_param.type = cert_pi_trustAnchors;
|
||
|
in_param.value.pointer.chain = additional_trust_anchors;
|
||
|
cvin.push_back(in_param);
|
||
|
in_param.type = cert_pi_useOnlyTrustAnchors;
|
||
|
in_param.value.scalar.b = PR_FALSE;
|
||
|
cvin.push_back(in_param);
|
||
|
}
|
||
|
if (chain_verify_callback) {
|
||
|
in_param.type = cert_pi_chainVerifyCallback;
|
||
|
in_param.value.pointer.chainVerifyCallback = chain_verify_callback;
|
||
|
cvin.push_back(in_param);
|
||
|
}
|
||
|
in_param.type = cert_pi_end;
|
||
|
cvin.push_back(in_param);
|
||
|
|
||
|
SECStatus rv = CERT_PKIXVerifyCert(cert_handle, certificateUsageSSLServer,
|
||
|
&cvin[0], cvout, NULL);
|
||
|
if (rv != SECSuccess) {
|
||
|
rv = RetryPKIXVerifyCertWithWorkarounds(cert_handle, num_policy_oids,
|
||
|
cert_io_enabled, &cvin, cvout);
|
||
|
}
|
||
|
return rv;
|
||
|
}
|
||
|
|
||
|
// PKIXVerifyCert calls this function to work around some bugs in
|
||
|
// CERT_PKIXVerifyCert. All the arguments of this function are either the
|
||
|
// arguments or local variables of PKIXVerifyCert.
|
||
|
SECStatus RetryPKIXVerifyCertWithWorkarounds(
|
||
|
CERTCertificate* cert_handle, int num_policy_oids,
|
||
|
bool cert_io_enabled, std::vector<CERTValInParam>* cvin,
|
||
|
CERTValOutParam* cvout) {
|
||
|
// We call this function when the first CERT_PKIXVerifyCert call in
|
||
|
// PKIXVerifyCert failed, so we initialize |rv| to SECFailure.
|
||
|
SECStatus rv = SECFailure;
|
||
|
int nss_error = PORT_GetError();
|
||
|
CERTValInParam in_param;
|
||
|
|
||
|
// If we get SEC_ERROR_UNKNOWN_ISSUER, we may be missing an intermediate
|
||
|
// CA certificate, so we retry with cert_pi_useAIACertFetch.
|
||
|
// cert_pi_useAIACertFetch has several bugs in its error handling and
|
||
|
// error reporting (NSS bug 528743), so we don't use it by default.
|
||
|
// Note: When building a certificate chain, CERT_PKIXVerifyCert may
|
||
|
// incorrectly pick a CA certificate with the same subject name as the
|
||
|
// missing intermediate CA certificate, and fail with the
|
||
|
// SEC_ERROR_BAD_SIGNATURE error (NSS bug 524013), so we also retry with
|
||
|
// cert_pi_useAIACertFetch on SEC_ERROR_BAD_SIGNATURE.
|
||
|
if (cert_io_enabled &&
|
||
|
(nss_error == SEC_ERROR_UNKNOWN_ISSUER ||
|
||
|
nss_error == SEC_ERROR_BAD_SIGNATURE)) {
|
||
|
DCHECK_EQ(cvin->back().type, cert_pi_end);
|
||
|
cvin->pop_back();
|
||
|
in_param.type = cert_pi_useAIACertFetch;
|
||
|
in_param.value.scalar.b = PR_TRUE;
|
||
|
cvin->push_back(in_param);
|
||
|
in_param.type = cert_pi_end;
|
||
|
cvin->push_back(in_param);
|
||
|
rv = CERT_PKIXVerifyCert(cert_handle, certificateUsageSSLServer,
|
||
|
&(*cvin)[0], cvout, NULL);
|
||
|
if (rv == SECSuccess)
|
||
|
return rv;
|
||
|
int new_nss_error = PORT_GetError();
|
||
|
if (new_nss_error == SEC_ERROR_INVALID_ARGS ||
|
||
|
new_nss_error == SEC_ERROR_UNKNOWN_AIA_LOCATION_TYPE ||
|
||
|
new_nss_error == SEC_ERROR_BAD_INFO_ACCESS_LOCATION ||
|
||
|
new_nss_error == SEC_ERROR_BAD_HTTP_RESPONSE ||
|
||
|
new_nss_error == SEC_ERROR_BAD_LDAP_RESPONSE ||
|
||
|
!IS_SEC_ERROR(new_nss_error)) {
|
||
|
// Use the original error code because of cert_pi_useAIACertFetch's
|
||
|
// bad error reporting.
|
||
|
PORT_SetError(nss_error);
|
||
|
return rv;
|
||
|
}
|
||
|
nss_error = new_nss_error;
|
||
|
}
|
||
|
|
||
|
// If an intermediate CA certificate has requireExplicitPolicy in its
|
||
|
// policyConstraints extension, CERT_PKIXVerifyCert fails with
|
||
|
// SEC_ERROR_POLICY_VALIDATION_FAILED because we didn't specify any
|
||
|
// certificate policy (NSS bug 552775). So we retry with the certificate
|
||
|
// policy found in the server certificate.
|
||
|
if (nss_error == SEC_ERROR_POLICY_VALIDATION_FAILED &&
|
||
|
num_policy_oids == 0) {
|
||
|
SECOidTag policy = GetFirstCertPolicy(cert_handle);
|
||
|
if (policy != SEC_OID_UNKNOWN) {
|
||
|
DCHECK_EQ(cvin->back().type, cert_pi_end);
|
||
|
cvin->pop_back();
|
||
|
in_param.type = cert_pi_policyOID;
|
||
|
in_param.value.arraySize = 1;
|
||
|
in_param.value.array.oids = &policy;
|
||
|
cvin->push_back(in_param);
|
||
|
in_param.type = cert_pi_end;
|
||
|
cvin->push_back(in_param);
|
||
|
rv = CERT_PKIXVerifyCert(cert_handle, certificateUsageSSLServer,
|
||
|
&(*cvin)[0], cvout, NULL);
|
||
|
if (rv != SECSuccess) {
|
||
|
// Use the original error code.
|
||
|
PORT_SetError(nss_error);
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
return rv;
|
||
|
}
|
||
|
|
||
|
// Decodes the certificatePolicies extension of the certificate. Returns
|
||
|
// NULL if the certificate doesn't have the extension or the extension can't
|
||
|
// be decoded. The returned value must be freed with a
|
||
|
// CERT_DestroyCertificatePoliciesExtension call.
|
||
|
CERTCertificatePolicies* DecodeCertPolicies(
|
||
|
CERTCertificate* cert_handle) {
|
||
|
SECItem policy_ext;
|
||
|
SECStatus rv = CERT_FindCertExtension(cert_handle,
|
||
|
SEC_OID_X509_CERTIFICATE_POLICIES,
|
||
|
&policy_ext);
|
||
|
if (rv != SECSuccess)
|
||
|
return NULL;
|
||
|
CERTCertificatePolicies* policies =
|
||
|
CERT_DecodeCertificatePoliciesExtension(&policy_ext);
|
||
|
SECITEM_FreeItem(&policy_ext, PR_FALSE);
|
||
|
return policies;
|
||
|
}
|
||
|
|
||
|
// Returns the OID tag for the first certificate policy in the certificate's
|
||
|
// certificatePolicies extension. Returns SEC_OID_UNKNOWN if the certificate
|
||
|
// has no certificate policy.
|
||
|
SECOidTag GetFirstCertPolicy(CERTCertificate* cert_handle) {
|
||
|
ScopedCERTCertificatePolicies policies(DecodeCertPolicies(cert_handle));
|
||
|
if (!policies.get())
|
||
|
return SEC_OID_UNKNOWN;
|
||
|
|
||
|
CERTPolicyInfo* policy_info = policies->policyInfos[0];
|
||
|
if (!policy_info)
|
||
|
return SEC_OID_UNKNOWN;
|
||
|
if (policy_info->oid != SEC_OID_UNKNOWN)
|
||
|
return policy_info->oid;
|
||
|
|
||
|
// The certificate policy is unknown to NSS. We need to create a dynamic
|
||
|
// OID tag for the policy.
|
||
|
SECOidData od;
|
||
|
od.oid.len = policy_info->policyID.len;
|
||
|
od.oid.data = policy_info->policyID.data;
|
||
|
od.offset = SEC_OID_UNKNOWN;
|
||
|
// NSS doesn't allow us to pass an empty description, so I use a hardcoded,
|
||
|
// default description here. The description doesn't need to be unique for
|
||
|
// each OID.
|
||
|
od.desc = "a certificate policy";
|
||
|
od.mechanism = CKM_INVALID_MECHANISM;
|
||
|
od.supportedExtension = INVALID_CERT_EXTENSION;
|
||
|
return SECOID_AddEntry(&od);
|
||
|
}
|
||
|
|
||
|
HashValue CertPublicKeyHashSHA256(CERTCertificate* cert) {
|
||
|
HashValue hash(HASH_VALUE_SHA256);
|
||
|
SECStatus rv = HASH_HashBuf(HASH_AlgSHA256, hash.data(),
|
||
|
cert->derPublicKey.data, cert->derPublicKey.len);
|
||
|
DCHECK_EQ(rv, SECSuccess);
|
||
|
return hash;
|
||
|
}
|
||
|
|
||
|
void AppendPublicKeyHashes(CERTCertList* cert_list,
|
||
|
CERTCertificate* root_cert,
|
||
|
HashValueVector* hashes) {
|
||
|
for (CERTCertListNode* node = CERT_LIST_HEAD(cert_list);
|
||
|
!CERT_LIST_END(node, cert_list);
|
||
|
node = CERT_LIST_NEXT(node)) {
|
||
|
hashes->push_back(CertPublicKeyHashSHA256(node->cert));
|
||
|
}
|
||
|
if (root_cert) {
|
||
|
hashes->push_back(CertPublicKeyHashSHA256(root_cert));
|
||
|
}
|
||
|
}
|
||
|
|
||
|
// Returns true if |cert_handle| contains a policy OID that is an EV policy
|
||
|
// OID according to |metadata|, storing the resulting policy OID in
|
||
|
// |*ev_policy_oid|. A true return is not sufficient to establish that a
|
||
|
// certificate is EV, but a false return is sufficient to establish the
|
||
|
// certificate cannot be EV.
|
||
|
bool IsEVCandidate(EVRootCAMetadata* metadata,
|
||
|
CERTCertificate* cert_handle,
|
||
|
SECOidTag* ev_policy_oid) {
|
||
|
*ev_policy_oid = SEC_OID_UNKNOWN;
|
||
|
DCHECK(cert_handle);
|
||
|
ScopedCERTCertificatePolicies policies(DecodeCertPolicies(cert_handle));
|
||
|
if (!policies.get())
|
||
|
return false;
|
||
|
|
||
|
CERTPolicyInfo** policy_infos = policies->policyInfos;
|
||
|
while (*policy_infos != NULL) {
|
||
|
CERTPolicyInfo* policy_info = *policy_infos++;
|
||
|
// If the Policy OID is unknown, that implicitly means it has not been
|
||
|
// registered as an EV policy.
|
||
|
if (policy_info->oid == SEC_OID_UNKNOWN)
|
||
|
continue;
|
||
|
if (metadata->IsEVPolicyOID(policy_info->oid)) {
|
||
|
*ev_policy_oid = policy_info->oid;
|
||
|
|
||
|
// De-prioritize the CA/Browser forum Extended Validation policy
|
||
|
// (2.23.140.1.1). See crbug.com/705285.
|
||
|
if (!EVRootCAMetadata::IsCaBrowserForumEvOid(policy_info->oid))
|
||
|
break;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
return *ev_policy_oid != SEC_OID_UNKNOWN;
|
||
|
}
|
||
|
|
||
|
// Studied Mozilla's code (esp. security/manager/ssl/src/nsIdentityChecking.cpp
|
||
|
// and nsNSSCertHelper.cpp) to learn how to verify EV certificate.
|
||
|
// TODO(wtc): A possible optimization is that we get the trust anchor from
|
||
|
// the first PKIXVerifyCert call. We look up the EV policy for the trust
|
||
|
// anchor. If the trust anchor has no EV policy, we know the cert isn't EV.
|
||
|
// Otherwise, we pass just that EV policy (as opposed to all the EV policies)
|
||
|
// to the second PKIXVerifyCert call.
|
||
|
bool VerifyEV(CERTCertificate* cert_handle,
|
||
|
int flags,
|
||
|
CRLSet* crl_set,
|
||
|
bool rev_checking_enabled,
|
||
|
EVRootCAMetadata* metadata,
|
||
|
SECOidTag ev_policy_oid,
|
||
|
CERTCertList* additional_trust_anchors,
|
||
|
CERTChainVerifyCallback* chain_verify_callback) {
|
||
|
CERTValOutParam cvout[3];
|
||
|
int cvout_index = 0;
|
||
|
cvout[cvout_index].type = cert_po_certList;
|
||
|
cvout[cvout_index].value.pointer.chain = NULL;
|
||
|
int cvout_cert_list_index = cvout_index;
|
||
|
cvout_index++;
|
||
|
cvout[cvout_index].type = cert_po_trustAnchor;
|
||
|
cvout[cvout_index].value.pointer.cert = NULL;
|
||
|
int cvout_trust_anchor_index = cvout_index;
|
||
|
cvout_index++;
|
||
|
cvout[cvout_index].type = cert_po_end;
|
||
|
ScopedCERTValOutParam scoped_cvout(cvout);
|
||
|
|
||
|
SECStatus status = PKIXVerifyCert(
|
||
|
cert_handle,
|
||
|
rev_checking_enabled,
|
||
|
true, /* hard fail is implied in EV. */
|
||
|
flags & CertVerifier::VERIFY_CERT_IO_ENABLED,
|
||
|
&ev_policy_oid,
|
||
|
1,
|
||
|
additional_trust_anchors,
|
||
|
chain_verify_callback,
|
||
|
cvout);
|
||
|
if (status != SECSuccess)
|
||
|
return false;
|
||
|
|
||
|
CERTCertificate* root_ca =
|
||
|
cvout[cvout_trust_anchor_index].value.pointer.cert;
|
||
|
if (root_ca == NULL)
|
||
|
return false;
|
||
|
|
||
|
// This second PKIXVerifyCert call could have found a different certification
|
||
|
// path and one or more of the certificates on this new path, that weren't on
|
||
|
// the old path, might have been revoked.
|
||
|
if (crl_set) {
|
||
|
CRLSetResult crl_set_result = CheckRevocationWithCRLSet(
|
||
|
cvout[cvout_cert_list_index].value.pointer.chain,
|
||
|
cvout[cvout_trust_anchor_index].value.pointer.cert,
|
||
|
crl_set);
|
||
|
if (crl_set_result == kCRLSetRevoked)
|
||
|
return false;
|
||
|
}
|
||
|
|
||
|
SHA256HashValue fingerprint;
|
||
|
crypto::SHA256HashString(
|
||
|
base::StringPiece(reinterpret_cast<const char*>(root_ca->derCert.data),
|
||
|
root_ca->derCert.len),
|
||
|
fingerprint.data, sizeof(fingerprint.data));
|
||
|
return metadata->HasEVPolicyOID(fingerprint, ev_policy_oid);
|
||
|
}
|
||
|
|
||
|
// Convert a CertificateList to an NSS CERTCertList. If any certs couldn't be
|
||
|
// converted, they are silently ignored.
|
||
|
ScopedCERTCertList CertificateListToCERTCertListIgnoringErrors(
|
||
|
const CertificateList& list) {
|
||
|
ScopedCERTCertList result(CERT_NewCertList());
|
||
|
for (size_t i = 0; i < list.size(); ++i) {
|
||
|
ScopedCERTCertificate cert =
|
||
|
x509_util::CreateCERTCertificateFromX509Certificate(list[i].get());
|
||
|
if (cert)
|
||
|
CERT_AddCertToListTail(result.get(), cert.release());
|
||
|
else
|
||
|
LOG(WARNING) << "ignoring cert: " << list[i]->subject().GetDisplayName();
|
||
|
}
|
||
|
return result;
|
||
|
}
|
||
|
|
||
|
} // namespace
|
||
|
|
||
|
CertVerifyProcNSS::CertVerifyProcNSS()
|
||
|
: cache_ocsp_response_from_side_channel_(
|
||
|
reinterpret_cast<CacheOCSPResponseFromSideChannelFunction>(
|
||
|
dlsym(RTLD_DEFAULT, "CERT_CacheOCSPResponseFromSideChannel")))
|
||
|
{
|
||
|
}
|
||
|
|
||
|
CertVerifyProcNSS::~CertVerifyProcNSS() = default;
|
||
|
|
||
|
bool CertVerifyProcNSS::SupportsAdditionalTrustAnchors() const {
|
||
|
return true;
|
||
|
}
|
||
|
|
||
|
bool CertVerifyProcNSS::SupportsOCSPStapling() const {
|
||
|
return cache_ocsp_response_from_side_channel_;
|
||
|
}
|
||
|
|
||
|
int CertVerifyProcNSS::VerifyInternalImpl(
|
||
|
X509Certificate* cert,
|
||
|
const std::string& hostname,
|
||
|
const std::string& ocsp_response,
|
||
|
int flags,
|
||
|
CRLSet* crl_set,
|
||
|
const CertificateList& additional_trust_anchors,
|
||
|
CERTChainVerifyCallback* chain_verify_callback,
|
||
|
CertVerifyResult* verify_result) {
|
||
|
// Convert the whole input chain into NSS certificates. Even though only the
|
||
|
// target cert is explicitly referred to in this function, creating NSS
|
||
|
// certificates for the intermediates is required for PKIXVerifyCert to find
|
||
|
// them during chain building.
|
||
|
ScopedCERTCertificateList input_chain =
|
||
|
x509_util::CreateCERTCertificateListFromX509Certificate(
|
||
|
cert, x509_util::InvalidIntermediateBehavior::kIgnore);
|
||
|
if (input_chain.empty()) {
|
||
|
verify_result->cert_status |= CERT_STATUS_INVALID;
|
||
|
return ERR_CERT_INVALID;
|
||
|
}
|
||
|
CERTCertificate* cert_handle = input_chain[0].get();
|
||
|
|
||
|
if (!ocsp_response.empty() && cache_ocsp_response_from_side_channel_) {
|
||
|
// Note: NSS uses a thread-safe global hash table, so this call will
|
||
|
// affect any concurrent verification operations on |cert| or copies of
|
||
|
// the same certificate. This is an unavoidable limitation of NSS's OCSP
|
||
|
// API.
|
||
|
SECItem ocsp_response_item;
|
||
|
ocsp_response_item.data = reinterpret_cast<unsigned char*>(
|
||
|
const_cast<char*>(ocsp_response.data()));
|
||
|
ocsp_response_item.len = ocsp_response.size();
|
||
|
cache_ocsp_response_from_side_channel_(CERT_GetDefaultCertDB(), cert_handle,
|
||
|
PR_Now(), &ocsp_response_item,
|
||
|
nullptr);
|
||
|
}
|
||
|
|
||
|
// Setup a callback to call into CheckChainRevocationWithCRLSet with the
|
||
|
// current CRLSet. If the CRLSet revokes a given chain, |was_revoked|
|
||
|
// will be set to true.
|
||
|
// The same callback and args are used for every invocation of
|
||
|
// PKIXVerifyCert, as CheckChainRevocationWithCRLSet handles resetting
|
||
|
// |was_revoked| as necessary.
|
||
|
CheckChainRevocationArgs check_chain_revocation_args;
|
||
|
check_chain_revocation_args.crl_set = crl_set;
|
||
|
check_chain_revocation_args.next_callback = chain_verify_callback;
|
||
|
|
||
|
CERTChainVerifyCallback crlset_callback;
|
||
|
memset(&crlset_callback, 0, sizeof(crlset_callback));
|
||
|
crlset_callback.isChainValid = &CheckChainRevocationWithCRLSet;
|
||
|
crlset_callback.isChainValidArg =
|
||
|
static_cast<void*>(&check_chain_revocation_args);
|
||
|
|
||
|
// Make sure that the cert is valid now.
|
||
|
SECCertTimeValidity validity = CERT_CheckCertValidTimes(
|
||
|
cert_handle, PR_Now(), PR_TRUE);
|
||
|
if (validity != secCertTimeValid)
|
||
|
verify_result->cert_status |= CERT_STATUS_DATE_INVALID;
|
||
|
|
||
|
CERTValOutParam cvout[3];
|
||
|
int cvout_index = 0;
|
||
|
cvout[cvout_index].type = cert_po_certList;
|
||
|
cvout[cvout_index].value.pointer.chain = NULL;
|
||
|
int cvout_cert_list_index = cvout_index;
|
||
|
cvout_index++;
|
||
|
cvout[cvout_index].type = cert_po_trustAnchor;
|
||
|
cvout[cvout_index].value.pointer.cert = NULL;
|
||
|
int cvout_trust_anchor_index = cvout_index;
|
||
|
cvout_index++;
|
||
|
cvout[cvout_index].type = cert_po_end;
|
||
|
ScopedCERTValOutParam scoped_cvout(cvout);
|
||
|
|
||
|
EVRootCAMetadata* metadata = EVRootCAMetadata::GetInstance();
|
||
|
SECOidTag ev_policy_oid = SEC_OID_UNKNOWN;
|
||
|
bool is_ev_candidate =
|
||
|
(flags & CertVerifier::VERIFY_EV_CERT) &&
|
||
|
IsEVCandidate(metadata, cert_handle, &ev_policy_oid);
|
||
|
bool cert_io_enabled = flags & CertVerifier::VERIFY_CERT_IO_ENABLED;
|
||
|
bool check_revocation =
|
||
|
cert_io_enabled &&
|
||
|
(flags & CertVerifier::VERIFY_REV_CHECKING_ENABLED);
|
||
|
if (check_revocation)
|
||
|
verify_result->cert_status |= CERT_STATUS_REV_CHECKING_ENABLED;
|
||
|
|
||
|
ScopedCERTCertList trust_anchors;
|
||
|
if (!additional_trust_anchors.empty()) {
|
||
|
trust_anchors =
|
||
|
CertificateListToCERTCertListIgnoringErrors(additional_trust_anchors);
|
||
|
}
|
||
|
|
||
|
SECStatus status =
|
||
|
PKIXVerifyCert(cert_handle, check_revocation, false, cert_io_enabled,
|
||
|
NULL, 0, trust_anchors.get(), &crlset_callback, cvout);
|
||
|
|
||
|
if (status == SECSuccess &&
|
||
|
(flags & CertVerifier::VERIFY_REV_CHECKING_REQUIRED_LOCAL_ANCHORS) &&
|
||
|
!IsKnownRoot(cvout[cvout_trust_anchor_index].value.pointer.cert)) {
|
||
|
// TODO(rsleevi): Optimize this by supplying the constructed chain to
|
||
|
// libpkix via cvin. Omitting for now, due to lack of coverage in upstream
|
||
|
// NSS tests for that feature.
|
||
|
scoped_cvout.Clear();
|
||
|
verify_result->cert_status |= CERT_STATUS_REV_CHECKING_ENABLED;
|
||
|
status = PKIXVerifyCert(cert_handle, true, true, cert_io_enabled, NULL, 0,
|
||
|
trust_anchors.get(), &crlset_callback, cvout);
|
||
|
}
|
||
|
|
||
|
if (status == SECSuccess) {
|
||
|
AppendPublicKeyHashes(cvout[cvout_cert_list_index].value.pointer.chain,
|
||
|
cvout[cvout_trust_anchor_index].value.pointer.cert,
|
||
|
&verify_result->public_key_hashes);
|
||
|
|
||
|
verify_result->is_issued_by_known_root =
|
||
|
IsKnownRoot(cvout[cvout_trust_anchor_index].value.pointer.cert);
|
||
|
verify_result->is_issued_by_additional_trust_anchor =
|
||
|
IsAdditionalTrustAnchor(
|
||
|
trust_anchors.get(),
|
||
|
cvout[cvout_trust_anchor_index].value.pointer.cert);
|
||
|
|
||
|
GetCertChainInfo(cvout[cvout_cert_list_index].value.pointer.chain,
|
||
|
cvout[cvout_trust_anchor_index].value.pointer.cert,
|
||
|
verify_result);
|
||
|
}
|
||
|
|
||
|
CRLSetResult crl_set_result = kCRLSetUnknown;
|
||
|
if (crl_set) {
|
||
|
if (status == SECSuccess) {
|
||
|
// Reverify the returned chain; NSS should have already called
|
||
|
// CheckChainRevocationWithCRLSet prior to returning, but given the
|
||
|
// edge cases (self-signed certs that are trusted; cached chains;
|
||
|
// unreadable code), this is more about defense in depth than
|
||
|
// functional necessity.
|
||
|
crl_set_result = CheckRevocationWithCRLSet(
|
||
|
cvout[cvout_cert_list_index].value.pointer.chain,
|
||
|
cvout[cvout_trust_anchor_index].value.pointer.cert, crl_set);
|
||
|
if (crl_set_result == kCRLSetRevoked) {
|
||
|
PORT_SetError(SEC_ERROR_REVOKED_CERTIFICATE);
|
||
|
status = SECFailure;
|
||
|
}
|
||
|
} else if (PORT_GetError() == SEC_ERROR_APPLICATION_CALLBACK_ERROR &&
|
||
|
check_chain_revocation_args.was_revoked) {
|
||
|
// If a CRLSet was supplied, and the error was an application callback
|
||
|
// error, then it was directed through the CRLSet code and that
|
||
|
// particular chain was revoked.
|
||
|
PORT_SetError(SEC_ERROR_REVOKED_CERTIFICATE);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
if (status != SECSuccess) {
|
||
|
int err = PORT_GetError();
|
||
|
LOG(ERROR) << "CERT_PKIXVerifyCert for " << hostname
|
||
|
<< " failed err=" << err;
|
||
|
// CERT_PKIXVerifyCert rerports the wrong error code for
|
||
|
// expired certificates (NSS bug 491174)
|
||
|
if (err == SEC_ERROR_CERT_NOT_VALID &&
|
||
|
(verify_result->cert_status & CERT_STATUS_DATE_INVALID))
|
||
|
err = SEC_ERROR_EXPIRED_CERTIFICATE;
|
||
|
CertStatus cert_status = MapCertErrorToCertStatus(err);
|
||
|
if (cert_status) {
|
||
|
verify_result->cert_status |= cert_status;
|
||
|
return MapCertStatusToNetError(verify_result->cert_status);
|
||
|
}
|
||
|
// |err| is not a certificate error.
|
||
|
return MapSecurityError(err);
|
||
|
}
|
||
|
|
||
|
if (IsCertStatusError(verify_result->cert_status))
|
||
|
return MapCertStatusToNetError(verify_result->cert_status);
|
||
|
|
||
|
if ((flags & CertVerifier::VERIFY_EV_CERT) && is_ev_candidate) {
|
||
|
check_revocation |=
|
||
|
crl_set_result != kCRLSetOk &&
|
||
|
cert_io_enabled &&
|
||
|
(flags & CertVerifier::VERIFY_REV_CHECKING_ENABLED_EV_ONLY);
|
||
|
if (check_revocation)
|
||
|
verify_result->cert_status |= CERT_STATUS_REV_CHECKING_ENABLED;
|
||
|
|
||
|
if (VerifyEV(cert_handle, flags, crl_set, check_revocation, metadata,
|
||
|
ev_policy_oid, trust_anchors.get(), &crlset_callback)) {
|
||
|
verify_result->cert_status |= CERT_STATUS_IS_EV;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
return OK;
|
||
|
}
|
||
|
|
||
|
int CertVerifyProcNSS::VerifyInternal(
|
||
|
X509Certificate* cert,
|
||
|
const std::string& hostname,
|
||
|
const std::string& ocsp_response,
|
||
|
int flags,
|
||
|
CRLSet* crl_set,
|
||
|
const CertificateList& additional_trust_anchors,
|
||
|
CertVerifyResult* verify_result) {
|
||
|
return VerifyInternalImpl(cert, hostname, ocsp_response, flags, crl_set,
|
||
|
additional_trust_anchors,
|
||
|
NULL, // chain_verify_callback
|
||
|
verify_result);
|
||
|
}
|
||
|
|
||
|
} // namespace net
|