mirror of
https://github.com/klzgrad/naiveproxy.git
synced 2024-11-28 08:16:09 +03:00
301 lines
10 KiB
C++
301 lines
10 KiB
C++
|
// Copyright (c) 2012 The Chromium Authors. All rights reserved.
|
||
|
// Use of this source code is governed by a BSD-style license that can be
|
||
|
// found in the LICENSE file.
|
||
|
|
||
|
#include "base/time/time.h"
|
||
|
|
||
|
#include <stdint.h>
|
||
|
#include <sys/time.h>
|
||
|
#include <time.h>
|
||
|
#if defined(OS_ANDROID) && !defined(__LP64__)
|
||
|
#include <time64.h>
|
||
|
#endif
|
||
|
#include <unistd.h>
|
||
|
|
||
|
#include <limits>
|
||
|
|
||
|
#include "base/numerics/safe_math.h"
|
||
|
#include "base/synchronization/lock.h"
|
||
|
#include "build/build_config.h"
|
||
|
|
||
|
#if defined(OS_ANDROID)
|
||
|
#include "base/os_compat_android.h"
|
||
|
#elif defined(OS_NACL)
|
||
|
#include "base/os_compat_nacl.h"
|
||
|
#endif
|
||
|
|
||
|
#if defined(OS_MACOSX)
|
||
|
static_assert(sizeof(time_t) >= 8, "Y2038 problem!");
|
||
|
#endif
|
||
|
|
||
|
namespace {
|
||
|
|
||
|
// This prevents a crash on traversing the environment global and looking up
|
||
|
// the 'TZ' variable in libc. See: crbug.com/390567.
|
||
|
base::Lock* GetSysTimeToTimeStructLock() {
|
||
|
static auto* lock = new base::Lock();
|
||
|
return lock;
|
||
|
}
|
||
|
|
||
|
// Define a system-specific SysTime that wraps either to a time_t or
|
||
|
// a time64_t depending on the host system, and associated convertion.
|
||
|
// See crbug.com/162007
|
||
|
#if defined(OS_ANDROID) && !defined(__LP64__)
|
||
|
typedef time64_t SysTime;
|
||
|
|
||
|
SysTime SysTimeFromTimeStruct(struct tm* timestruct, bool is_local) {
|
||
|
base::AutoLock locked(*GetSysTimeToTimeStructLock());
|
||
|
if (is_local)
|
||
|
return mktime64(timestruct);
|
||
|
else
|
||
|
return timegm64(timestruct);
|
||
|
}
|
||
|
|
||
|
void SysTimeToTimeStruct(SysTime t, struct tm* timestruct, bool is_local) {
|
||
|
base::AutoLock locked(*GetSysTimeToTimeStructLock());
|
||
|
if (is_local)
|
||
|
localtime64_r(&t, timestruct);
|
||
|
else
|
||
|
gmtime64_r(&t, timestruct);
|
||
|
}
|
||
|
|
||
|
#elif defined(OS_AIX)
|
||
|
|
||
|
// The function timegm is not available on AIX.
|
||
|
time_t aix_timegm(struct tm* tm) {
|
||
|
time_t ret;
|
||
|
char* tz;
|
||
|
|
||
|
tz = getenv("TZ");
|
||
|
if (tz) {
|
||
|
tz = strdup(tz);
|
||
|
}
|
||
|
setenv("TZ", "GMT0", 1);
|
||
|
tzset();
|
||
|
ret = mktime(tm);
|
||
|
if (tz) {
|
||
|
setenv("TZ", tz, 1);
|
||
|
free(tz);
|
||
|
} else {
|
||
|
unsetenv("TZ");
|
||
|
}
|
||
|
tzset();
|
||
|
return ret;
|
||
|
}
|
||
|
|
||
|
typedef time_t SysTime;
|
||
|
|
||
|
SysTime SysTimeFromTimeStruct(struct tm* timestruct, bool is_local) {
|
||
|
base::AutoLock locked(*GetSysTimeToTimeStructLock());
|
||
|
if (is_local)
|
||
|
return mktime(timestruct);
|
||
|
else
|
||
|
return aix_timegm(timestruct);
|
||
|
}
|
||
|
|
||
|
void SysTimeToTimeStruct(SysTime t, struct tm* timestruct, bool is_local) {
|
||
|
base::AutoLock locked(*GetSysTimeToTimeStructLock());
|
||
|
if (is_local)
|
||
|
localtime_r(&t, timestruct);
|
||
|
else
|
||
|
gmtime_r(&t, timestruct);
|
||
|
}
|
||
|
|
||
|
#else // OS_ANDROID && !__LP64__
|
||
|
typedef time_t SysTime;
|
||
|
|
||
|
SysTime SysTimeFromTimeStruct(struct tm* timestruct, bool is_local) {
|
||
|
base::AutoLock locked(*GetSysTimeToTimeStructLock());
|
||
|
if (is_local)
|
||
|
return mktime(timestruct);
|
||
|
else
|
||
|
return timegm(timestruct);
|
||
|
}
|
||
|
|
||
|
void SysTimeToTimeStruct(SysTime t, struct tm* timestruct, bool is_local) {
|
||
|
base::AutoLock locked(*GetSysTimeToTimeStructLock());
|
||
|
if (is_local)
|
||
|
localtime_r(&t, timestruct);
|
||
|
else
|
||
|
gmtime_r(&t, timestruct);
|
||
|
}
|
||
|
#endif // OS_ANDROID
|
||
|
|
||
|
} // namespace
|
||
|
|
||
|
namespace base {
|
||
|
|
||
|
void Time::Explode(bool is_local, Exploded* exploded) const {
|
||
|
// Time stores times with microsecond resolution, but Exploded only carries
|
||
|
// millisecond resolution, so begin by being lossy. Adjust from Windows
|
||
|
// epoch (1601) to Unix epoch (1970);
|
||
|
int64_t microseconds = us_ - kTimeTToMicrosecondsOffset;
|
||
|
// The following values are all rounded towards -infinity.
|
||
|
int64_t milliseconds; // Milliseconds since epoch.
|
||
|
SysTime seconds; // Seconds since epoch.
|
||
|
int millisecond; // Exploded millisecond value (0-999).
|
||
|
if (microseconds >= 0) {
|
||
|
// Rounding towards -infinity <=> rounding towards 0, in this case.
|
||
|
milliseconds = microseconds / kMicrosecondsPerMillisecond;
|
||
|
seconds = milliseconds / kMillisecondsPerSecond;
|
||
|
millisecond = milliseconds % kMillisecondsPerSecond;
|
||
|
} else {
|
||
|
// Round these *down* (towards -infinity).
|
||
|
milliseconds = (microseconds - kMicrosecondsPerMillisecond + 1) /
|
||
|
kMicrosecondsPerMillisecond;
|
||
|
seconds =
|
||
|
(milliseconds - kMillisecondsPerSecond + 1) / kMillisecondsPerSecond;
|
||
|
// Make this nonnegative (and between 0 and 999 inclusive).
|
||
|
millisecond = milliseconds % kMillisecondsPerSecond;
|
||
|
if (millisecond < 0)
|
||
|
millisecond += kMillisecondsPerSecond;
|
||
|
}
|
||
|
|
||
|
struct tm timestruct;
|
||
|
SysTimeToTimeStruct(seconds, ×truct, is_local);
|
||
|
|
||
|
exploded->year = timestruct.tm_year + 1900;
|
||
|
exploded->month = timestruct.tm_mon + 1;
|
||
|
exploded->day_of_week = timestruct.tm_wday;
|
||
|
exploded->day_of_month = timestruct.tm_mday;
|
||
|
exploded->hour = timestruct.tm_hour;
|
||
|
exploded->minute = timestruct.tm_min;
|
||
|
exploded->second = timestruct.tm_sec;
|
||
|
exploded->millisecond = millisecond;
|
||
|
}
|
||
|
|
||
|
// static
|
||
|
bool Time::FromExploded(bool is_local, const Exploded& exploded, Time* time) {
|
||
|
CheckedNumeric<int> month = exploded.month;
|
||
|
month--;
|
||
|
CheckedNumeric<int> year = exploded.year;
|
||
|
year -= 1900;
|
||
|
if (!month.IsValid() || !year.IsValid()) {
|
||
|
*time = Time(0);
|
||
|
return false;
|
||
|
}
|
||
|
|
||
|
struct tm timestruct;
|
||
|
timestruct.tm_sec = exploded.second;
|
||
|
timestruct.tm_min = exploded.minute;
|
||
|
timestruct.tm_hour = exploded.hour;
|
||
|
timestruct.tm_mday = exploded.day_of_month;
|
||
|
timestruct.tm_mon = month.ValueOrDie();
|
||
|
timestruct.tm_year = year.ValueOrDie();
|
||
|
timestruct.tm_wday = exploded.day_of_week; // mktime/timegm ignore this
|
||
|
timestruct.tm_yday = 0; // mktime/timegm ignore this
|
||
|
timestruct.tm_isdst = -1; // attempt to figure it out
|
||
|
#if !defined(OS_NACL) && !defined(OS_SOLARIS) && !defined(OS_AIX)
|
||
|
timestruct.tm_gmtoff = 0; // not a POSIX field, so mktime/timegm ignore
|
||
|
timestruct.tm_zone = nullptr; // not a POSIX field, so mktime/timegm ignore
|
||
|
#endif
|
||
|
|
||
|
SysTime seconds;
|
||
|
|
||
|
// Certain exploded dates do not really exist due to daylight saving times,
|
||
|
// and this causes mktime() to return implementation-defined values when
|
||
|
// tm_isdst is set to -1. On Android, the function will return -1, while the
|
||
|
// C libraries of other platforms typically return a liberally-chosen value.
|
||
|
// Handling this requires the special code below.
|
||
|
|
||
|
// SysTimeFromTimeStruct() modifies the input structure, save current value.
|
||
|
struct tm timestruct0 = timestruct;
|
||
|
|
||
|
seconds = SysTimeFromTimeStruct(×truct, is_local);
|
||
|
if (seconds == -1) {
|
||
|
// Get the time values with tm_isdst == 0 and 1, then select the closest one
|
||
|
// to UTC 00:00:00 that isn't -1.
|
||
|
timestruct = timestruct0;
|
||
|
timestruct.tm_isdst = 0;
|
||
|
int64_t seconds_isdst0 = SysTimeFromTimeStruct(×truct, is_local);
|
||
|
|
||
|
timestruct = timestruct0;
|
||
|
timestruct.tm_isdst = 1;
|
||
|
int64_t seconds_isdst1 = SysTimeFromTimeStruct(×truct, is_local);
|
||
|
|
||
|
// seconds_isdst0 or seconds_isdst1 can be -1 for some timezones.
|
||
|
// E.g. "CLST" (Chile Summer Time) returns -1 for 'tm_isdt == 1'.
|
||
|
if (seconds_isdst0 < 0)
|
||
|
seconds = seconds_isdst1;
|
||
|
else if (seconds_isdst1 < 0)
|
||
|
seconds = seconds_isdst0;
|
||
|
else
|
||
|
seconds = std::min(seconds_isdst0, seconds_isdst1);
|
||
|
}
|
||
|
|
||
|
// Handle overflow. Clamping the range to what mktime and timegm might
|
||
|
// return is the best that can be done here. It's not ideal, but it's better
|
||
|
// than failing here or ignoring the overflow case and treating each time
|
||
|
// overflow as one second prior to the epoch.
|
||
|
int64_t milliseconds = 0;
|
||
|
if (seconds == -1 && (exploded.year < 1969 || exploded.year > 1970)) {
|
||
|
// If exploded.year is 1969 or 1970, take -1 as correct, with the
|
||
|
// time indicating 1 second prior to the epoch. (1970 is allowed to handle
|
||
|
// time zone and DST offsets.) Otherwise, return the most future or past
|
||
|
// time representable. Assumes the time_t epoch is 1970-01-01 00:00:00 UTC.
|
||
|
//
|
||
|
// The minimum and maximum representible times that mktime and timegm could
|
||
|
// return are used here instead of values outside that range to allow for
|
||
|
// proper round-tripping between exploded and counter-type time
|
||
|
// representations in the presence of possible truncation to time_t by
|
||
|
// division and use with other functions that accept time_t.
|
||
|
//
|
||
|
// When representing the most distant time in the future, add in an extra
|
||
|
// 999ms to avoid the time being less than any other possible value that
|
||
|
// this function can return.
|
||
|
|
||
|
// On Android, SysTime is int64_t, special care must be taken to avoid
|
||
|
// overflows.
|
||
|
const int64_t min_seconds = (sizeof(SysTime) < sizeof(int64_t))
|
||
|
? std::numeric_limits<SysTime>::min()
|
||
|
: std::numeric_limits<int32_t>::min();
|
||
|
const int64_t max_seconds = (sizeof(SysTime) < sizeof(int64_t))
|
||
|
? std::numeric_limits<SysTime>::max()
|
||
|
: std::numeric_limits<int32_t>::max();
|
||
|
if (exploded.year < 1969) {
|
||
|
milliseconds = min_seconds * kMillisecondsPerSecond;
|
||
|
} else {
|
||
|
milliseconds = max_seconds * kMillisecondsPerSecond;
|
||
|
milliseconds += (kMillisecondsPerSecond - 1);
|
||
|
}
|
||
|
} else {
|
||
|
base::CheckedNumeric<int64_t> checked_millis = seconds;
|
||
|
checked_millis *= kMillisecondsPerSecond;
|
||
|
checked_millis += exploded.millisecond;
|
||
|
if (!checked_millis.IsValid()) {
|
||
|
*time = base::Time(0);
|
||
|
return false;
|
||
|
}
|
||
|
milliseconds = checked_millis.ValueOrDie();
|
||
|
}
|
||
|
|
||
|
// Adjust from Unix (1970) to Windows (1601) epoch avoiding overflows.
|
||
|
base::CheckedNumeric<int64_t> checked_microseconds_win_epoch = milliseconds;
|
||
|
checked_microseconds_win_epoch *= kMicrosecondsPerMillisecond;
|
||
|
checked_microseconds_win_epoch += kTimeTToMicrosecondsOffset;
|
||
|
if (!checked_microseconds_win_epoch.IsValid()) {
|
||
|
*time = base::Time(0);
|
||
|
return false;
|
||
|
}
|
||
|
base::Time converted_time(checked_microseconds_win_epoch.ValueOrDie());
|
||
|
|
||
|
// If |exploded.day_of_month| is set to 31 on a 28-30 day month, it will
|
||
|
// return the first day of the next month. Thus round-trip the time and
|
||
|
// compare the initial |exploded| with |utc_to_exploded| time.
|
||
|
base::Time::Exploded to_exploded;
|
||
|
if (!is_local)
|
||
|
converted_time.UTCExplode(&to_exploded);
|
||
|
else
|
||
|
converted_time.LocalExplode(&to_exploded);
|
||
|
|
||
|
if (ExplodedMostlyEquals(to_exploded, exploded)) {
|
||
|
*time = converted_time;
|
||
|
return true;
|
||
|
}
|
||
|
|
||
|
*time = Time(0);
|
||
|
return false;
|
||
|
}
|
||
|
|
||
|
} // namespace base
|