naiveproxy/base/third_party/nspr/prtime.cc

1187 lines
48 KiB
C++
Raw Normal View History

2018-08-11 08:35:24 +03:00
/* Portions are Copyright (C) 2011 Google Inc */
/* ***** BEGIN LICENSE BLOCK *****
* Version: MPL 1.1/GPL 2.0/LGPL 2.1
*
* The contents of this file are subject to the Mozilla Public License Version
* 1.1 (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
* http://www.mozilla.org/MPL/
*
* Software distributed under the License is distributed on an "AS IS" basis,
* WITHOUT WARRANTY OF ANY KIND, either express or implied. See the License
* for the specific language governing rights and limitations under the
* License.
*
* The Original Code is the Netscape Portable Runtime (NSPR).
*
* The Initial Developer of the Original Code is
* Netscape Communications Corporation.
* Portions created by the Initial Developer are Copyright (C) 1998-2000
* the Initial Developer. All Rights Reserved.
*
* Contributor(s):
*
* Alternatively, the contents of this file may be used under the terms of
* either the GNU General Public License Version 2 or later (the "GPL"), or
* the GNU Lesser General Public License Version 2.1 or later (the "LGPL"),
* in which case the provisions of the GPL or the LGPL are applicable instead
* of those above. If you wish to allow use of your version of this file only
* under the terms of either the GPL or the LGPL, and not to allow others to
* use your version of this file under the terms of the MPL, indicate your
* decision by deleting the provisions above and replace them with the notice
* and other provisions required by the GPL or the LGPL. If you do not delete
* the provisions above, a recipient may use your version of this file under
* the terms of any one of the MPL, the GPL or the LGPL.
*
* ***** END LICENSE BLOCK ***** */
/*
* prtime.cc --
* NOTE: The original nspr file name is prtime.c
*
* NSPR date and time functions
*
* CVS revision 3.37
*/
/*
* The following functions were copied from the NSPR prtime.c file.
* PR_ParseTimeString
* We inlined the new PR_ParseTimeStringToExplodedTime function to avoid
* copying PR_ExplodeTime and PR_LocalTimeParameters. (The PR_ExplodeTime
* and PR_ImplodeTime calls cancel each other out.)
* PR_NormalizeTime
* PR_GMTParameters
* PR_ImplodeTime
* Upstream implementation from
* http://lxr.mozilla.org/nspr/source/pr/src/misc/prtime.c#221
* All types and macros are defined in the base/third_party/prtime.h file.
* These have been copied from the following nspr files. We have only copied
* over the types we need.
* 1. prtime.h
* 2. prtypes.h
* 3. prlong.h
*
* Unit tests are in base/time/pr_time_unittest.cc.
*/
#include <limits.h>
#include "base/logging.h"
#include "base/third_party/nspr/prtime.h"
#include "build/build_config.h"
#include <errno.h> /* for EINVAL */
#include <time.h>
/*
* The COUNT_LEAPS macro counts the number of leap years passed by
* till the start of the given year Y. At the start of the year 4
* A.D. the number of leap years passed by is 0, while at the start of
* the year 5 A.D. this count is 1. The number of years divisible by
* 100 but not divisible by 400 (the non-leap years) is deducted from
* the count to get the correct number of leap years.
*
* The COUNT_DAYS macro counts the number of days since 01/01/01 till the
* start of the given year Y. The number of days at the start of the year
* 1 is 0 while the number of days at the start of the year 2 is 365
* (which is ((2)-1) * 365) and so on. The reference point is 01/01/01
* midnight 00:00:00.
*/
#define COUNT_LEAPS(Y) (((Y)-1) / 4 - ((Y)-1) / 100 + ((Y)-1) / 400)
#define COUNT_DAYS(Y) (((Y)-1) * 365 + COUNT_LEAPS(Y))
#define DAYS_BETWEEN_YEARS(A, B) (COUNT_DAYS(B) - COUNT_DAYS(A))
/* Implements the Unix localtime_r() function for windows */
#if defined(OS_WIN)
static void localtime_r(const time_t* secs, struct tm* time) {
(void) localtime_s(time, secs);
}
#endif
/*
* Static variables used by functions in this file
*/
/*
* The following array contains the day of year for the last day of
* each month, where index 1 is January, and day 0 is January 1.
*/
static const int lastDayOfMonth[2][13] = {
{-1, 30, 58, 89, 119, 150, 180, 211, 242, 272, 303, 333, 364},
{-1, 30, 59, 90, 120, 151, 181, 212, 243, 273, 304, 334, 365}
};
/*
* The number of days in a month
*/
static const PRInt8 nDays[2][12] = {
{31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31},
{31, 29, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31}
};
/*
*------------------------------------------------------------------------
*
* PR_ImplodeTime --
*
* Cf. time_t mktime(struct tm *tp)
* Note that 1 year has < 2^25 seconds. So an PRInt32 is large enough.
*
*------------------------------------------------------------------------
*/
PRTime
PR_ImplodeTime(const PRExplodedTime *exploded)
{
PRExplodedTime copy;
PRTime retVal;
PRInt64 secPerDay, usecPerSec;
PRInt64 temp;
PRInt64 numSecs64;
PRInt32 numDays;
PRInt32 numSecs;
/* Normalize first. Do this on our copy */
copy = *exploded;
PR_NormalizeTime(&copy, PR_GMTParameters);
numDays = DAYS_BETWEEN_YEARS(1970, copy.tm_year);
numSecs = copy.tm_yday * 86400 + copy.tm_hour * 3600 + copy.tm_min * 60 +
copy.tm_sec;
LL_I2L(temp, numDays);
LL_I2L(secPerDay, 86400);
LL_MUL(temp, temp, secPerDay);
LL_I2L(numSecs64, numSecs);
LL_ADD(numSecs64, numSecs64, temp);
/* apply the GMT and DST offsets */
LL_I2L(temp, copy.tm_params.tp_gmt_offset);
LL_SUB(numSecs64, numSecs64, temp);
LL_I2L(temp, copy.tm_params.tp_dst_offset);
LL_SUB(numSecs64, numSecs64, temp);
LL_I2L(usecPerSec, 1000000L);
LL_MUL(temp, numSecs64, usecPerSec);
LL_I2L(retVal, copy.tm_usec);
LL_ADD(retVal, retVal, temp);
return retVal;
}
/*
*-------------------------------------------------------------------------
*
* IsLeapYear --
*
* Returns 1 if the year is a leap year, 0 otherwise.
*
*-------------------------------------------------------------------------
*/
static int IsLeapYear(PRInt16 year)
{
if ((year % 4 == 0 && year % 100 != 0) || year % 400 == 0)
return 1;
else
return 0;
}
/*
* 'secOffset' should be less than 86400 (i.e., a day).
* 'time' should point to a normalized PRExplodedTime.
*/
static void
ApplySecOffset(PRExplodedTime *time, PRInt32 secOffset)
{
time->tm_sec += secOffset;
/* Note that in this implementation we do not count leap seconds */
if (time->tm_sec < 0 || time->tm_sec >= 60) {
time->tm_min += time->tm_sec / 60;
time->tm_sec %= 60;
if (time->tm_sec < 0) {
time->tm_sec += 60;
time->tm_min--;
}
}
if (time->tm_min < 0 || time->tm_min >= 60) {
time->tm_hour += time->tm_min / 60;
time->tm_min %= 60;
if (time->tm_min < 0) {
time->tm_min += 60;
time->tm_hour--;
}
}
if (time->tm_hour < 0) {
/* Decrement mday, yday, and wday */
time->tm_hour += 24;
time->tm_mday--;
time->tm_yday--;
if (time->tm_mday < 1) {
time->tm_month--;
if (time->tm_month < 0) {
time->tm_month = 11;
time->tm_year--;
if (IsLeapYear(time->tm_year))
time->tm_yday = 365;
else
time->tm_yday = 364;
}
time->tm_mday = nDays[IsLeapYear(time->tm_year)][time->tm_month];
}
time->tm_wday--;
if (time->tm_wday < 0)
time->tm_wday = 6;
} else if (time->tm_hour > 23) {
/* Increment mday, yday, and wday */
time->tm_hour -= 24;
time->tm_mday++;
time->tm_yday++;
if (time->tm_mday >
nDays[IsLeapYear(time->tm_year)][time->tm_month]) {
time->tm_mday = 1;
time->tm_month++;
if (time->tm_month > 11) {
time->tm_month = 0;
time->tm_year++;
time->tm_yday = 0;
}
}
time->tm_wday++;
if (time->tm_wday > 6)
time->tm_wday = 0;
}
}
void
PR_NormalizeTime(PRExplodedTime *time, PRTimeParamFn params)
{
int daysInMonth;
PRInt32 numDays;
/* Get back to GMT */
time->tm_sec -= time->tm_params.tp_gmt_offset
+ time->tm_params.tp_dst_offset;
time->tm_params.tp_gmt_offset = 0;
time->tm_params.tp_dst_offset = 0;
/* Now normalize GMT */
if (time->tm_usec < 0 || time->tm_usec >= 1000000) {
time->tm_sec += time->tm_usec / 1000000;
time->tm_usec %= 1000000;
if (time->tm_usec < 0) {
time->tm_usec += 1000000;
time->tm_sec--;
}
}
/* Note that we do not count leap seconds in this implementation */
if (time->tm_sec < 0 || time->tm_sec >= 60) {
time->tm_min += time->tm_sec / 60;
time->tm_sec %= 60;
if (time->tm_sec < 0) {
time->tm_sec += 60;
time->tm_min--;
}
}
if (time->tm_min < 0 || time->tm_min >= 60) {
time->tm_hour += time->tm_min / 60;
time->tm_min %= 60;
if (time->tm_min < 0) {
time->tm_min += 60;
time->tm_hour--;
}
}
if (time->tm_hour < 0 || time->tm_hour >= 24) {
time->tm_mday += time->tm_hour / 24;
time->tm_hour %= 24;
if (time->tm_hour < 0) {
time->tm_hour += 24;
time->tm_mday--;
}
}
/* Normalize month and year before mday */
if (time->tm_month < 0 || time->tm_month >= 12) {
time->tm_year += static_cast<PRInt16>(time->tm_month / 12);
time->tm_month %= 12;
if (time->tm_month < 0) {
time->tm_month += 12;
time->tm_year--;
}
}
/* Now that month and year are in proper range, normalize mday */
if (time->tm_mday < 1) {
/* mday too small */
do {
/* the previous month */
time->tm_month--;
if (time->tm_month < 0) {
time->tm_month = 11;
time->tm_year--;
}
time->tm_mday += nDays[IsLeapYear(time->tm_year)][time->tm_month];
} while (time->tm_mday < 1);
} else {
daysInMonth = nDays[IsLeapYear(time->tm_year)][time->tm_month];
while (time->tm_mday > daysInMonth) {
/* mday too large */
time->tm_mday -= daysInMonth;
time->tm_month++;
if (time->tm_month > 11) {
time->tm_month = 0;
time->tm_year++;
}
daysInMonth = nDays[IsLeapYear(time->tm_year)][time->tm_month];
}
}
/* Recompute yday and wday */
time->tm_yday = static_cast<PRInt16>(time->tm_mday +
lastDayOfMonth[IsLeapYear(time->tm_year)][time->tm_month]);
numDays = DAYS_BETWEEN_YEARS(1970, time->tm_year) + time->tm_yday;
time->tm_wday = (numDays + 4) % 7;
if (time->tm_wday < 0) {
time->tm_wday += 7;
}
/* Recompute time parameters */
time->tm_params = params(time);
ApplySecOffset(time, time->tm_params.tp_gmt_offset
+ time->tm_params.tp_dst_offset);
}
/*
*------------------------------------------------------------------------
*
* PR_GMTParameters --
*
* Returns the PRTimeParameters for Greenwich Mean Time.
* Trivially, both the tp_gmt_offset and tp_dst_offset fields are 0.
*
*------------------------------------------------------------------------
*/
PRTimeParameters
PR_GMTParameters(const PRExplodedTime *gmt)
{
PRTimeParameters retVal = { 0, 0 };
return retVal;
}
/*
* The following code implements PR_ParseTimeString(). It is based on
* ns/lib/xp/xp_time.c, revision 1.25, by Jamie Zawinski <jwz@netscape.com>.
*/
/*
* We only recognize the abbreviations of a small subset of time zones
* in North America, Europe, and Japan.
*
* PST/PDT: Pacific Standard/Daylight Time
* MST/MDT: Mountain Standard/Daylight Time
* CST/CDT: Central Standard/Daylight Time
* EST/EDT: Eastern Standard/Daylight Time
* AST: Atlantic Standard Time
* NST: Newfoundland Standard Time
* GMT: Greenwich Mean Time
* BST: British Summer Time
* MET: Middle Europe Time
* EET: Eastern Europe Time
* JST: Japan Standard Time
*/
typedef enum
{
TT_UNKNOWN,
TT_SUN, TT_MON, TT_TUE, TT_WED, TT_THU, TT_FRI, TT_SAT,
TT_JAN, TT_FEB, TT_MAR, TT_APR, TT_MAY, TT_JUN,
TT_JUL, TT_AUG, TT_SEP, TT_OCT, TT_NOV, TT_DEC,
TT_PST, TT_PDT, TT_MST, TT_MDT, TT_CST, TT_CDT, TT_EST, TT_EDT,
TT_AST, TT_NST, TT_GMT, TT_BST, TT_MET, TT_EET, TT_JST
} TIME_TOKEN;
/*
* This parses a time/date string into a PRTime
* (microseconds after "1-Jan-1970 00:00:00 GMT").
* It returns PR_SUCCESS on success, and PR_FAILURE
* if the time/date string can't be parsed.
*
* Many formats are handled, including:
*
* 14 Apr 89 03:20:12
* 14 Apr 89 03:20 GMT
* Fri, 17 Mar 89 4:01:33
* Fri, 17 Mar 89 4:01 GMT
* Mon Jan 16 16:12 PDT 1989
* Mon Jan 16 16:12 +0130 1989
* 6 May 1992 16:41-JST (Wednesday)
* 22-AUG-1993 10:59:12.82
* 22-AUG-1993 10:59pm
* 22-AUG-1993 12:59am
* 22-AUG-1993 12:59 PM
* Friday, August 04, 1995 3:54 PM
* 06/21/95 04:24:34 PM
* 20/06/95 21:07
* 95-06-08 19:32:48 EDT
* 1995-06-17T23:11:25.342156Z
*
* If the input string doesn't contain a description of the timezone,
* we consult the `default_to_gmt' to decide whether the string should
* be interpreted relative to the local time zone (PR_FALSE) or GMT (PR_TRUE).
* The correct value for this argument depends on what standard specified
* the time string which you are parsing.
*/
PRStatus
PR_ParseTimeString(
const char *string,
PRBool default_to_gmt,
PRTime *result_imploded)
{
PRExplodedTime tm;
PRExplodedTime *result = &tm;
TIME_TOKEN dotw = TT_UNKNOWN;
TIME_TOKEN month = TT_UNKNOWN;
TIME_TOKEN zone = TT_UNKNOWN;
int zone_offset = -1;
int dst_offset = 0;
int date = -1;
PRInt32 year = -1;
int hour = -1;
int min = -1;
int sec = -1;
int usec = -1;
const char *rest = string;
int iterations = 0;
PR_ASSERT(string && result);
if (!string || !result) return PR_FAILURE;
while (*rest)
{
if (iterations++ > 1000)
{
return PR_FAILURE;
}
switch (*rest)
{
case 'a': case 'A':
if (month == TT_UNKNOWN &&
(rest[1] == 'p' || rest[1] == 'P') &&
(rest[2] == 'r' || rest[2] == 'R'))
month = TT_APR;
else if (zone == TT_UNKNOWN &&
(rest[1] == 's' || rest[1] == 'S') &&
(rest[2] == 't' || rest[2] == 'T'))
zone = TT_AST;
else if (month == TT_UNKNOWN &&
(rest[1] == 'u' || rest[1] == 'U') &&
(rest[2] == 'g' || rest[2] == 'G'))
month = TT_AUG;
break;
case 'b': case 'B':
if (zone == TT_UNKNOWN &&
(rest[1] == 's' || rest[1] == 'S') &&
(rest[2] == 't' || rest[2] == 'T'))
zone = TT_BST;
break;
case 'c': case 'C':
if (zone == TT_UNKNOWN &&
(rest[1] == 'd' || rest[1] == 'D') &&
(rest[2] == 't' || rest[2] == 'T'))
zone = TT_CDT;
else if (zone == TT_UNKNOWN &&
(rest[1] == 's' || rest[1] == 'S') &&
(rest[2] == 't' || rest[2] == 'T'))
zone = TT_CST;
break;
case 'd': case 'D':
if (month == TT_UNKNOWN &&
(rest[1] == 'e' || rest[1] == 'E') &&
(rest[2] == 'c' || rest[2] == 'C'))
month = TT_DEC;
break;
case 'e': case 'E':
if (zone == TT_UNKNOWN &&
(rest[1] == 'd' || rest[1] == 'D') &&
(rest[2] == 't' || rest[2] == 'T'))
zone = TT_EDT;
else if (zone == TT_UNKNOWN &&
(rest[1] == 'e' || rest[1] == 'E') &&
(rest[2] == 't' || rest[2] == 'T'))
zone = TT_EET;
else if (zone == TT_UNKNOWN &&
(rest[1] == 's' || rest[1] == 'S') &&
(rest[2] == 't' || rest[2] == 'T'))
zone = TT_EST;
break;
case 'f': case 'F':
if (month == TT_UNKNOWN &&
(rest[1] == 'e' || rest[1] == 'E') &&
(rest[2] == 'b' || rest[2] == 'B'))
month = TT_FEB;
else if (dotw == TT_UNKNOWN &&
(rest[1] == 'r' || rest[1] == 'R') &&
(rest[2] == 'i' || rest[2] == 'I'))
dotw = TT_FRI;
break;
case 'g': case 'G':
if (zone == TT_UNKNOWN &&
(rest[1] == 'm' || rest[1] == 'M') &&
(rest[2] == 't' || rest[2] == 'T'))
zone = TT_GMT;
break;
case 'j': case 'J':
if (month == TT_UNKNOWN &&
(rest[1] == 'a' || rest[1] == 'A') &&
(rest[2] == 'n' || rest[2] == 'N'))
month = TT_JAN;
else if (zone == TT_UNKNOWN &&
(rest[1] == 's' || rest[1] == 'S') &&
(rest[2] == 't' || rest[2] == 'T'))
zone = TT_JST;
else if (month == TT_UNKNOWN &&
(rest[1] == 'u' || rest[1] == 'U') &&
(rest[2] == 'l' || rest[2] == 'L'))
month = TT_JUL;
else if (month == TT_UNKNOWN &&
(rest[1] == 'u' || rest[1] == 'U') &&
(rest[2] == 'n' || rest[2] == 'N'))
month = TT_JUN;
break;
case 'm': case 'M':
if (month == TT_UNKNOWN &&
(rest[1] == 'a' || rest[1] == 'A') &&
(rest[2] == 'r' || rest[2] == 'R'))
month = TT_MAR;
else if (month == TT_UNKNOWN &&
(rest[1] == 'a' || rest[1] == 'A') &&
(rest[2] == 'y' || rest[2] == 'Y'))
month = TT_MAY;
else if (zone == TT_UNKNOWN &&
(rest[1] == 'd' || rest[1] == 'D') &&
(rest[2] == 't' || rest[2] == 'T'))
zone = TT_MDT;
else if (zone == TT_UNKNOWN &&
(rest[1] == 'e' || rest[1] == 'E') &&
(rest[2] == 't' || rest[2] == 'T'))
zone = TT_MET;
else if (dotw == TT_UNKNOWN &&
(rest[1] == 'o' || rest[1] == 'O') &&
(rest[2] == 'n' || rest[2] == 'N'))
dotw = TT_MON;
else if (zone == TT_UNKNOWN &&
(rest[1] == 's' || rest[1] == 'S') &&
(rest[2] == 't' || rest[2] == 'T'))
zone = TT_MST;
break;
case 'n': case 'N':
if (month == TT_UNKNOWN &&
(rest[1] == 'o' || rest[1] == 'O') &&
(rest[2] == 'v' || rest[2] == 'V'))
month = TT_NOV;
else if (zone == TT_UNKNOWN &&
(rest[1] == 's' || rest[1] == 'S') &&
(rest[2] == 't' || rest[2] == 'T'))
zone = TT_NST;
break;
case 'o': case 'O':
if (month == TT_UNKNOWN &&
(rest[1] == 'c' || rest[1] == 'C') &&
(rest[2] == 't' || rest[2] == 'T'))
month = TT_OCT;
break;
case 'p': case 'P':
if (zone == TT_UNKNOWN &&
(rest[1] == 'd' || rest[1] == 'D') &&
(rest[2] == 't' || rest[2] == 'T'))
zone = TT_PDT;
else if (zone == TT_UNKNOWN &&
(rest[1] == 's' || rest[1] == 'S') &&
(rest[2] == 't' || rest[2] == 'T'))
zone = TT_PST;
break;
case 's': case 'S':
if (dotw == TT_UNKNOWN &&
(rest[1] == 'a' || rest[1] == 'A') &&
(rest[2] == 't' || rest[2] == 'T'))
dotw = TT_SAT;
else if (month == TT_UNKNOWN &&
(rest[1] == 'e' || rest[1] == 'E') &&
(rest[2] == 'p' || rest[2] == 'P'))
month = TT_SEP;
else if (dotw == TT_UNKNOWN &&
(rest[1] == 'u' || rest[1] == 'U') &&
(rest[2] == 'n' || rest[2] == 'N'))
dotw = TT_SUN;
break;
case 't': case 'T':
if (dotw == TT_UNKNOWN &&
(rest[1] == 'h' || rest[1] == 'H') &&
(rest[2] == 'u' || rest[2] == 'U'))
dotw = TT_THU;
else if (dotw == TT_UNKNOWN &&
(rest[1] == 'u' || rest[1] == 'U') &&
(rest[2] == 'e' || rest[2] == 'E'))
dotw = TT_TUE;
break;
case 'u': case 'U':
if (zone == TT_UNKNOWN &&
(rest[1] == 't' || rest[1] == 'T') &&
!(rest[2] >= 'A' && rest[2] <= 'Z') &&
!(rest[2] >= 'a' && rest[2] <= 'z'))
/* UT is the same as GMT but UTx is not. */
zone = TT_GMT;
break;
case 'w': case 'W':
if (dotw == TT_UNKNOWN &&
(rest[1] == 'e' || rest[1] == 'E') &&
(rest[2] == 'd' || rest[2] == 'D'))
dotw = TT_WED;
break;
case '+': case '-':
{
const char *end;
int sign;
if (zone_offset != -1)
{
/* already got one... */
rest++;
break;
}
if (zone != TT_UNKNOWN && zone != TT_GMT)
{
/* GMT+0300 is legal, but PST+0300 is not. */
rest++;
break;
}
sign = ((*rest == '+') ? 1 : -1);
rest++; /* move over sign */
end = rest;
while (*end >= '0' && *end <= '9')
end++;
if (rest == end) /* no digits here */
break;
if ((end - rest) == 4)
/* offset in HHMM */
zone_offset = (((((rest[0]-'0')*10) + (rest[1]-'0')) * 60) +
(((rest[2]-'0')*10) + (rest[3]-'0')));
else if ((end - rest) == 2)
/* offset in hours */
zone_offset = (((rest[0]-'0')*10) + (rest[1]-'0')) * 60;
else if ((end - rest) == 1)
/* offset in hours */
zone_offset = (rest[0]-'0') * 60;
else
/* 3 or >4 */
break;
zone_offset *= sign;
zone = TT_GMT;
break;
}
case '0': case '1': case '2': case '3': case '4':
case '5': case '6': case '7': case '8': case '9':
{
int tmp_hour = -1;
int tmp_min = -1;
int tmp_sec = -1;
int tmp_usec = -1;
const char *end = rest + 1;
while (*end >= '0' && *end <= '9')
end++;
/* end is now the first character after a range of digits. */
if (*end == ':')
{
if (hour >= 0 && min >= 0) /* already got it */
break;
/* We have seen "[0-9]+:", so this is probably HH:MM[:SS] */
if ((end - rest) > 2)
/* it is [0-9][0-9][0-9]+: */
break;
else if ((end - rest) == 2)
tmp_hour = ((rest[0]-'0')*10 +
(rest[1]-'0'));
else
tmp_hour = (rest[0]-'0');
/* move over the colon, and parse minutes */
rest = ++end;
while (*end >= '0' && *end <= '9')
end++;
if (end == rest)
/* no digits after first colon? */
break;
else if ((end - rest) > 2)
/* it is [0-9][0-9][0-9]+: */
break;
else if ((end - rest) == 2)
tmp_min = ((rest[0]-'0')*10 +
(rest[1]-'0'));
else
tmp_min = (rest[0]-'0');
/* now go for seconds */
rest = end;
if (*rest == ':')
rest++;
end = rest;
while (*end >= '0' && *end <= '9')
end++;
if (end == rest)
/* no digits after second colon - that's ok. */
;
else if ((end - rest) > 2)
/* it is [0-9][0-9][0-9]+: */
break;
else if ((end - rest) == 2)
tmp_sec = ((rest[0]-'0')*10 +
(rest[1]-'0'));
else
tmp_sec = (rest[0]-'0');
/* fractional second */
rest = end;
if (*rest == '.')
{
rest++;
end++;
tmp_usec = 0;
/* use up to 6 digits, skip over the rest */
while (*end >= '0' && *end <= '9')
{
if (end - rest < 6)
tmp_usec = tmp_usec * 10 + *end - '0';
end++;
}
int ndigits = end - rest;
while (ndigits++ < 6)
tmp_usec *= 10;
rest = end;
}
if (*rest == 'Z')
{
zone = TT_GMT;
rest++;
}
else if (tmp_hour <= 12)
{
/* If we made it here, we've parsed hour and min,
and possibly sec, so the current token is a time.
Now skip over whitespace and see if there's an AM
or PM directly following the time.
*/
const char *s = end;
while (*s && (*s == ' ' || *s == '\t'))
s++;
if ((s[0] == 'p' || s[0] == 'P') &&
(s[1] == 'm' || s[1] == 'M'))
/* 10:05pm == 22:05, and 12:05pm == 12:05 */
tmp_hour = (tmp_hour == 12 ? 12 : tmp_hour + 12);
else if (tmp_hour == 12 &&
(s[0] == 'a' || s[0] == 'A') &&
(s[1] == 'm' || s[1] == 'M'))
/* 12:05am == 00:05 */
tmp_hour = 0;
}
hour = tmp_hour;
min = tmp_min;
sec = tmp_sec;
usec = tmp_usec;
rest = end;
break;
}
else if ((*end == '/' || *end == '-') &&
end[1] >= '0' && end[1] <= '9')
{
/* Perhaps this is 6/16/95, 16/6/95, 6-16-95, or 16-6-95
or even 95-06-05 or 1995-06-22.
*/
int n1, n2, n3;
const char *s;
if (month != TT_UNKNOWN)
/* if we saw a month name, this can't be. */
break;
s = rest;
n1 = (*s++ - '0'); /* first 1, 2 or 4 digits */
if (*s >= '0' && *s <= '9')
{
n1 = n1*10 + (*s++ - '0');
if (*s >= '0' && *s <= '9') /* optional digits 3 and 4 */
{
n1 = n1*10 + (*s++ - '0');
if (*s < '0' || *s > '9')
break;
n1 = n1*10 + (*s++ - '0');
}
}
if (*s != '/' && *s != '-') /* slash */
break;
s++;
if (*s < '0' || *s > '9') /* second 1 or 2 digits */
break;
n2 = (*s++ - '0');
if (*s >= '0' && *s <= '9')
n2 = n2*10 + (*s++ - '0');
if (*s != '/' && *s != '-') /* slash */
break;
s++;
if (*s < '0' || *s > '9') /* third 1, 2, 4, or 5 digits */
break;
n3 = (*s++ - '0');
if (*s >= '0' && *s <= '9')
n3 = n3*10 + (*s++ - '0');
if (*s >= '0' && *s <= '9') /* optional digits 3, 4, and 5 */
{
n3 = n3*10 + (*s++ - '0');
if (*s < '0' || *s > '9')
break;
n3 = n3*10 + (*s++ - '0');
if (*s >= '0' && *s <= '9')
n3 = n3*10 + (*s++ - '0');
}
if (*s == 'T' && s[1] >= '0' && s[1] <= '9')
/* followed by ISO 8601 T delimiter and number is ok */
;
else if ((*s >= '0' && *s <= '9') ||
(*s >= 'A' && *s <= 'Z') ||
(*s >= 'a' && *s <= 'z'))
/* but other alphanumerics are not ok */
break;
/* Ok, we parsed three multi-digit numbers, with / or -
between them. Now decide what the hell they are
(DD/MM/YY or MM/DD/YY or [YY]YY/MM/DD.)
*/
if (n1 > 31 || n1 == 0) /* must be [YY]YY/MM/DD */
{
if (n2 > 12) break;
if (n3 > 31) break;
year = n1;
if (year < 70)
year += 2000;
else if (year < 100)
year += 1900;
month = (TIME_TOKEN)(n2 + ((int)TT_JAN) - 1);
date = n3;
rest = s;
break;
}
if (n1 > 12 && n2 > 12) /* illegal */
{
rest = s;
break;
}
if (n3 < 70)
n3 += 2000;
else if (n3 < 100)
n3 += 1900;
if (n1 > 12) /* must be DD/MM/YY */
{
date = n1;
month = (TIME_TOKEN)(n2 + ((int)TT_JAN) - 1);
year = n3;
}
else /* assume MM/DD/YY */
{
/* #### In the ambiguous case, should we consult the
locale to find out the local default? */
month = (TIME_TOKEN)(n1 + ((int)TT_JAN) - 1);
date = n2;
year = n3;
}
rest = s;
}
else if ((*end >= 'A' && *end <= 'Z') ||
(*end >= 'a' && *end <= 'z'))
/* Digits followed by non-punctuation - what's that? */
;
else if ((end - rest) == 5) /* five digits is a year */
year = (year < 0
? ((rest[0]-'0')*10000L +
(rest[1]-'0')*1000L +
(rest[2]-'0')*100L +
(rest[3]-'0')*10L +
(rest[4]-'0'))
: year);
else if ((end - rest) == 4) /* four digits is a year */
year = (year < 0
? ((rest[0]-'0')*1000L +
(rest[1]-'0')*100L +
(rest[2]-'0')*10L +
(rest[3]-'0'))
: year);
else if ((end - rest) == 2) /* two digits - date or year */
{
int n = ((rest[0]-'0')*10 +
(rest[1]-'0'));
/* If we don't have a date (day of the month) and we see a number
less than 32, then assume that is the date.
Otherwise, if we have a date and not a year, assume this is the
year. If it is less than 70, then assume it refers to the 21st
century. If it is two digits (>= 70), assume it refers to this
century. Otherwise, assume it refers to an unambiguous year.
The world will surely end soon.
*/
if (date < 0 && n < 32)
date = n;
else if (year < 0)
{
if (n < 70)
year = 2000 + n;
else if (n < 100)
year = 1900 + n;
else
year = n;
}
/* else what the hell is this. */
}
else if ((end - rest) == 1) /* one digit - date */
date = (date < 0 ? (rest[0]-'0') : date);
/* else, three or more than five digits - what's that? */
break;
} /* case '0' .. '9' */
} /* switch */
/* Skip to the end of this token, whether we parsed it or not.
Tokens are delimited by whitespace, or ,;-+/()[] but explicitly not .:
'T' is also treated as delimiter when followed by a digit (ISO 8601).
*/
while (*rest &&
*rest != ' ' && *rest != '\t' &&
*rest != ',' && *rest != ';' &&
*rest != '-' && *rest != '+' &&
*rest != '/' &&
*rest != '(' && *rest != ')' && *rest != '[' && *rest != ']' &&
!(*rest == 'T' && rest[1] >= '0' && rest[1] <= '9')
)
rest++;
/* skip over uninteresting chars. */
SKIP_MORE:
while (*rest == ' ' || *rest == '\t' ||
*rest == ',' || *rest == ';' || *rest == '/' ||
*rest == '(' || *rest == ')' || *rest == '[' || *rest == ']')
rest++;
/* "-" is ignored at the beginning of a token if we have not yet
parsed a year (e.g., the second "-" in "30-AUG-1966"), or if
the character after the dash is not a digit. */
if (*rest == '-' && ((rest > string &&
isalpha((unsigned char)rest[-1]) && year < 0) ||
rest[1] < '0' || rest[1] > '9'))
{
rest++;
goto SKIP_MORE;
}
/* Skip T that may precede ISO 8601 time. */
if (*rest == 'T' && rest[1] >= '0' && rest[1] <= '9')
rest++;
} /* while */
if (zone != TT_UNKNOWN && zone_offset == -1)
{
switch (zone)
{
case TT_PST: zone_offset = -8 * 60; break;
case TT_PDT: zone_offset = -8 * 60; dst_offset = 1 * 60; break;
case TT_MST: zone_offset = -7 * 60; break;
case TT_MDT: zone_offset = -7 * 60; dst_offset = 1 * 60; break;
case TT_CST: zone_offset = -6 * 60; break;
case TT_CDT: zone_offset = -6 * 60; dst_offset = 1 * 60; break;
case TT_EST: zone_offset = -5 * 60; break;
case TT_EDT: zone_offset = -5 * 60; dst_offset = 1 * 60; break;
case TT_AST: zone_offset = -4 * 60; break;
case TT_NST: zone_offset = -3 * 60 - 30; break;
case TT_GMT: zone_offset = 0 * 60; break;
case TT_BST: zone_offset = 0 * 60; dst_offset = 1 * 60; break;
case TT_MET: zone_offset = 1 * 60; break;
case TT_EET: zone_offset = 2 * 60; break;
case TT_JST: zone_offset = 9 * 60; break;
default:
PR_ASSERT (0);
break;
}
}
/* If we didn't find a year, month, or day-of-the-month, we can't
possibly parse this, and in fact, mktime() will do something random
(I'm seeing it return "Tue Feb 5 06:28:16 2036", which is no doubt
a numerologically significant date... */
if (month == TT_UNKNOWN || date == -1 || year == -1 || year > PR_INT16_MAX)
return PR_FAILURE;
memset(result, 0, sizeof(*result));
if (usec != -1)
result->tm_usec = usec;
if (sec != -1)
result->tm_sec = sec;
if (min != -1)
result->tm_min = min;
if (hour != -1)
result->tm_hour = hour;
if (date != -1)
result->tm_mday = date;
if (month != TT_UNKNOWN)
result->tm_month = (((int)month) - ((int)TT_JAN));
if (year != -1)
result->tm_year = static_cast<PRInt16>(year);
if (dotw != TT_UNKNOWN)
result->tm_wday = static_cast<PRInt8>(((int)dotw) - ((int)TT_SUN));
/*
* Mainly to compute wday and yday, but normalized time is also required
* by the check below that works around a Visual C++ 2005 mktime problem.
*/
PR_NormalizeTime(result, PR_GMTParameters);
/* The remaining work is to set the gmt and dst offsets in tm_params. */
if (zone == TT_UNKNOWN && default_to_gmt)
{
/* No zone was specified, so pretend the zone was GMT. */
zone = TT_GMT;
zone_offset = 0;
}
if (zone_offset == -1)
{
/* no zone was specified, and we're to assume that everything
is local. */
struct tm localTime;
time_t secs;
PR_ASSERT(result->tm_month > -1 &&
result->tm_mday > 0 &&
result->tm_hour > -1 &&
result->tm_min > -1 &&
result->tm_sec > -1);
/*
* To obtain time_t from a tm structure representing the local
* time, we call mktime(). However, we need to see if we are
* on 1-Jan-1970 or before. If we are, we can't call mktime()
* because mktime() will crash on win16. In that case, we
* calculate zone_offset based on the zone offset at
* 00:00:00, 2 Jan 1970 GMT, and subtract zone_offset from the
* date we are parsing to transform the date to GMT. We also
* do so if mktime() returns (time_t) -1 (time out of range).
*/
/* month, day, hours, mins and secs are always non-negative
so we dont need to worry about them. */
if (result->tm_year >= 1970)
{
localTime.tm_sec = result->tm_sec;
localTime.tm_min = result->tm_min;
localTime.tm_hour = result->tm_hour;
localTime.tm_mday = result->tm_mday;
localTime.tm_mon = result->tm_month;
localTime.tm_year = result->tm_year - 1900;
/* Set this to -1 to tell mktime "I don't care". If you set
it to 0 or 1, you are making assertions about whether the
date you are handing it is in daylight savings mode or not;
and if you're wrong, it will "fix" it for you. */
localTime.tm_isdst = -1;
#if _MSC_VER == 1400 /* 1400 = Visual C++ 2005 (8.0) */
/*
* mktime will return (time_t) -1 if the input is a date
* after 23:59:59, December 31, 3000, US Pacific Time (not
* UTC as documented):
* http://msdn.microsoft.com/en-us/library/d1y53h2a(VS.80).aspx
* But if the year is 3001, mktime also invokes the invalid
* parameter handler, causing the application to crash. This
* problem has been reported in
* http://connect.microsoft.com/VisualStudio/feedback/ViewFeedback.aspx?FeedbackID=266036.
* We avoid this crash by not calling mktime if the date is
* out of range. To use a simple test that works in any time
* zone, we consider year 3000 out of range as well. (See
* bug 480740.)
*/
if (result->tm_year >= 3000) {
/* Emulate what mktime would have done. */
errno = EINVAL;
secs = (time_t) -1;
} else {
secs = mktime(&localTime);
}
#else
secs = mktime(&localTime);
#endif
if (secs != (time_t) -1)
{
*result_imploded = (PRInt64)secs * PR_USEC_PER_SEC;
*result_imploded += result->tm_usec;
return PR_SUCCESS;
}
}
/* So mktime() can't handle this case. We assume the
zone_offset for the date we are parsing is the same as
the zone offset on 00:00:00 2 Jan 1970 GMT. */
secs = 86400;
localtime_r(&secs, &localTime);
zone_offset = localTime.tm_min
+ 60 * localTime.tm_hour
+ 1440 * (localTime.tm_mday - 2);
}
result->tm_params.tp_gmt_offset = zone_offset * 60;
result->tm_params.tp_dst_offset = dst_offset * 60;
*result_imploded = PR_ImplodeTime(result);
return PR_SUCCESS;
}