mirror of
https://github.com/klzgrad/naiveproxy.git
synced 2024-11-28 08:16:09 +03:00
215 lines
4.3 KiB
C++
215 lines
4.3 KiB
C++
|
// Copyright (c) 2011 The Chromium Authors. All rights reserved.
|
||
|
// Use of this source code is governed by a BSD-style license that can be
|
||
|
// found in the LICENSE file.
|
||
|
|
||
|
#include "base/sha1.h"
|
||
|
|
||
|
#include <stddef.h>
|
||
|
#include <stdint.h>
|
||
|
#include <string.h>
|
||
|
|
||
|
#include "base/sys_byteorder.h"
|
||
|
|
||
|
namespace base {
|
||
|
|
||
|
// Implementation of SHA-1. Only handles data in byte-sized blocks,
|
||
|
// which simplifies the code a fair bit.
|
||
|
|
||
|
// Identifier names follow notation in FIPS PUB 180-3, where you'll
|
||
|
// also find a description of the algorithm:
|
||
|
// http://csrc.nist.gov/publications/fips/fips180-3/fips180-3_final.pdf
|
||
|
|
||
|
// Usage example:
|
||
|
//
|
||
|
// SecureHashAlgorithm sha;
|
||
|
// while(there is data to hash)
|
||
|
// sha.Update(moredata, size of data);
|
||
|
// sha.Final();
|
||
|
// memcpy(somewhere, sha.Digest(), 20);
|
||
|
//
|
||
|
// to reuse the instance of sha, call sha.Init();
|
||
|
|
||
|
// TODO(jhawkins): Replace this implementation with a per-platform
|
||
|
// implementation using each platform's crypto library. See
|
||
|
// http://crbug.com/47218
|
||
|
|
||
|
class SecureHashAlgorithm {
|
||
|
public:
|
||
|
SecureHashAlgorithm() { Init(); }
|
||
|
|
||
|
static const int kDigestSizeBytes;
|
||
|
|
||
|
void Init();
|
||
|
void Update(const void* data, size_t nbytes);
|
||
|
void Final();
|
||
|
|
||
|
// 20 bytes of message digest.
|
||
|
const unsigned char* Digest() const {
|
||
|
return reinterpret_cast<const unsigned char*>(H);
|
||
|
}
|
||
|
|
||
|
private:
|
||
|
void Pad();
|
||
|
void Process();
|
||
|
|
||
|
uint32_t A, B, C, D, E;
|
||
|
|
||
|
uint32_t H[5];
|
||
|
|
||
|
union {
|
||
|
uint32_t W[80];
|
||
|
uint8_t M[64];
|
||
|
};
|
||
|
|
||
|
uint32_t cursor;
|
||
|
uint64_t l;
|
||
|
};
|
||
|
|
||
|
static inline uint32_t f(uint32_t t, uint32_t B, uint32_t C, uint32_t D) {
|
||
|
if (t < 20) {
|
||
|
return (B & C) | ((~B) & D);
|
||
|
} else if (t < 40) {
|
||
|
return B ^ C ^ D;
|
||
|
} else if (t < 60) {
|
||
|
return (B & C) | (B & D) | (C & D);
|
||
|
} else {
|
||
|
return B ^ C ^ D;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
static inline uint32_t S(uint32_t n, uint32_t X) {
|
||
|
return (X << n) | (X >> (32-n));
|
||
|
}
|
||
|
|
||
|
static inline uint32_t K(uint32_t t) {
|
||
|
if (t < 20) {
|
||
|
return 0x5a827999;
|
||
|
} else if (t < 40) {
|
||
|
return 0x6ed9eba1;
|
||
|
} else if (t < 60) {
|
||
|
return 0x8f1bbcdc;
|
||
|
} else {
|
||
|
return 0xca62c1d6;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
const int SecureHashAlgorithm::kDigestSizeBytes = 20;
|
||
|
|
||
|
void SecureHashAlgorithm::Init() {
|
||
|
A = 0;
|
||
|
B = 0;
|
||
|
C = 0;
|
||
|
D = 0;
|
||
|
E = 0;
|
||
|
cursor = 0;
|
||
|
l = 0;
|
||
|
H[0] = 0x67452301;
|
||
|
H[1] = 0xefcdab89;
|
||
|
H[2] = 0x98badcfe;
|
||
|
H[3] = 0x10325476;
|
||
|
H[4] = 0xc3d2e1f0;
|
||
|
}
|
||
|
|
||
|
void SecureHashAlgorithm::Final() {
|
||
|
Pad();
|
||
|
Process();
|
||
|
|
||
|
for (int t = 0; t < 5; ++t)
|
||
|
H[t] = ByteSwap(H[t]);
|
||
|
}
|
||
|
|
||
|
void SecureHashAlgorithm::Update(const void* data, size_t nbytes) {
|
||
|
const uint8_t* d = reinterpret_cast<const uint8_t*>(data);
|
||
|
while (nbytes--) {
|
||
|
M[cursor++] = *d++;
|
||
|
if (cursor >= 64)
|
||
|
Process();
|
||
|
l += 8;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
void SecureHashAlgorithm::Pad() {
|
||
|
M[cursor++] = 0x80;
|
||
|
|
||
|
if (cursor > 64-8) {
|
||
|
// pad out to next block
|
||
|
while (cursor < 64)
|
||
|
M[cursor++] = 0;
|
||
|
|
||
|
Process();
|
||
|
}
|
||
|
|
||
|
while (cursor < 64-8)
|
||
|
M[cursor++] = 0;
|
||
|
|
||
|
M[cursor++] = (l >> 56) & 0xff;
|
||
|
M[cursor++] = (l >> 48) & 0xff;
|
||
|
M[cursor++] = (l >> 40) & 0xff;
|
||
|
M[cursor++] = (l >> 32) & 0xff;
|
||
|
M[cursor++] = (l >> 24) & 0xff;
|
||
|
M[cursor++] = (l >> 16) & 0xff;
|
||
|
M[cursor++] = (l >> 8) & 0xff;
|
||
|
M[cursor++] = l & 0xff;
|
||
|
}
|
||
|
|
||
|
void SecureHashAlgorithm::Process() {
|
||
|
uint32_t t;
|
||
|
|
||
|
// Each a...e corresponds to a section in the FIPS 180-3 algorithm.
|
||
|
|
||
|
// a.
|
||
|
//
|
||
|
// W and M are in a union, so no need to memcpy.
|
||
|
// memcpy(W, M, sizeof(M));
|
||
|
for (t = 0; t < 16; ++t)
|
||
|
W[t] = ByteSwap(W[t]);
|
||
|
|
||
|
// b.
|
||
|
for (t = 16; t < 80; ++t)
|
||
|
W[t] = S(1, W[t - 3] ^ W[t - 8] ^ W[t - 14] ^ W[t - 16]);
|
||
|
|
||
|
// c.
|
||
|
A = H[0];
|
||
|
B = H[1];
|
||
|
C = H[2];
|
||
|
D = H[3];
|
||
|
E = H[4];
|
||
|
|
||
|
// d.
|
||
|
for (t = 0; t < 80; ++t) {
|
||
|
uint32_t TEMP = S(5, A) + f(t, B, C, D) + E + W[t] + K(t);
|
||
|
E = D;
|
||
|
D = C;
|
||
|
C = S(30, B);
|
||
|
B = A;
|
||
|
A = TEMP;
|
||
|
}
|
||
|
|
||
|
// e.
|
||
|
H[0] += A;
|
||
|
H[1] += B;
|
||
|
H[2] += C;
|
||
|
H[3] += D;
|
||
|
H[4] += E;
|
||
|
|
||
|
cursor = 0;
|
||
|
}
|
||
|
|
||
|
std::string SHA1HashString(const std::string& str) {
|
||
|
char hash[SecureHashAlgorithm::kDigestSizeBytes];
|
||
|
SHA1HashBytes(reinterpret_cast<const unsigned char*>(str.c_str()),
|
||
|
str.length(), reinterpret_cast<unsigned char*>(hash));
|
||
|
return std::string(hash, SecureHashAlgorithm::kDigestSizeBytes);
|
||
|
}
|
||
|
|
||
|
void SHA1HashBytes(const unsigned char* data, size_t len,
|
||
|
unsigned char* hash) {
|
||
|
SecureHashAlgorithm sha;
|
||
|
sha.Update(data, len);
|
||
|
sha.Final();
|
||
|
|
||
|
memcpy(hash, sha.Digest(), SecureHashAlgorithm::kDigestSizeBytes);
|
||
|
}
|
||
|
|
||
|
} // namespace base
|