mirror of
https://github.com/klzgrad/naiveproxy.git
synced 2024-11-28 08:16:09 +03:00
520 lines
13 KiB
C
520 lines
13 KiB
C
|
/*
|
||
|
* Submitted by David Pacheco (dp.spambait@gmail.com)
|
||
|
*
|
||
|
* Redistribution and use in source and binary forms, with or without
|
||
|
* modification, are permitted provided that the following conditions
|
||
|
* are met:
|
||
|
* 1. Redistributions of source code must retain the above copyright
|
||
|
* notice, this list of conditions and the following disclaimer.
|
||
|
* 2. Redistributions in binary form must reproduce the above copyright
|
||
|
* notice, this list of conditions and the following disclaimer in the
|
||
|
* documentation and/or other materials provided with the distribution.
|
||
|
* 3. The name of the author may not be used to endorse or promote products
|
||
|
* derived from this software without specific prior written permission.
|
||
|
*
|
||
|
* THIS SOFTWARE IS PROVIDED BY SUN MICROSYSTEMS, INC. ``AS IS'' AND ANY
|
||
|
* EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
|
||
|
* WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
|
||
|
* DISCLAIMED. IN NO EVENT SHALL SUN MICROSYSTEMS, INC. BE LIABLE FOR ANY
|
||
|
* DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
|
||
|
* (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
|
||
|
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
|
||
|
* ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
||
|
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
|
||
|
* SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
||
|
*/
|
||
|
|
||
|
/*
|
||
|
* Copyright (c) 2007 Sun Microsystems. All rights reserved.
|
||
|
* Use is subject to license terms.
|
||
|
*/
|
||
|
|
||
|
/*
|
||
|
* evport.c: event backend using Solaris 10 event ports. See port_create(3C).
|
||
|
* This implementation is loosely modeled after the one used for select(2) (in
|
||
|
* select.c).
|
||
|
*
|
||
|
* The outstanding events are tracked in a data structure called evport_data.
|
||
|
* Each entry in the ed_fds array corresponds to a file descriptor, and contains
|
||
|
* pointers to the read and write events that correspond to that fd. (That is,
|
||
|
* when the file is readable, the "read" event should handle it, etc.)
|
||
|
*
|
||
|
* evport_add and evport_del update this data structure. evport_dispatch uses it
|
||
|
* to determine where to callback when an event occurs (which it gets from
|
||
|
* port_getn).
|
||
|
*
|
||
|
* Helper functions are used: grow() grows the file descriptor array as
|
||
|
* necessary when large fd's come in. reassociate() takes care of maintaining
|
||
|
* the proper file-descriptor/event-port associations.
|
||
|
*
|
||
|
* As in the select(2) implementation, signals are handled by evsignal.
|
||
|
*/
|
||
|
|
||
|
#ifdef HAVE_CONFIG_H
|
||
|
#include "config.h"
|
||
|
#endif
|
||
|
|
||
|
#include <sys/time.h>
|
||
|
#include <assert.h>
|
||
|
#include <sys/queue.h>
|
||
|
#include <errno.h>
|
||
|
#include <poll.h>
|
||
|
#include <port.h>
|
||
|
#include <signal.h>
|
||
|
#include <stdio.h>
|
||
|
#include <stdlib.h>
|
||
|
#include <string.h>
|
||
|
#include <time.h>
|
||
|
#include <unistd.h>
|
||
|
#ifdef CHECK_INVARIANTS
|
||
|
#include <assert.h>
|
||
|
#endif
|
||
|
|
||
|
#include "event.h"
|
||
|
#include "event-internal.h"
|
||
|
#include "log.h"
|
||
|
#include "evsignal.h"
|
||
|
|
||
|
|
||
|
/*
|
||
|
* Default value for ed_nevents, which is the maximum file descriptor number we
|
||
|
* can handle. If an event comes in for a file descriptor F > nevents, we will
|
||
|
* grow the array of file descriptors, doubling its size.
|
||
|
*/
|
||
|
#define DEFAULT_NFDS 16
|
||
|
|
||
|
|
||
|
/*
|
||
|
* EVENTS_PER_GETN is the maximum number of events to retrieve from port_getn on
|
||
|
* any particular call. You can speed things up by increasing this, but it will
|
||
|
* (obviously) require more memory.
|
||
|
*/
|
||
|
#define EVENTS_PER_GETN 8
|
||
|
|
||
|
/*
|
||
|
* Per-file-descriptor information about what events we're subscribed to. These
|
||
|
* fields are NULL if no event is subscribed to either of them.
|
||
|
*/
|
||
|
|
||
|
struct fd_info {
|
||
|
struct event* fdi_revt; /* the event responsible for the "read" */
|
||
|
struct event* fdi_wevt; /* the event responsible for the "write" */
|
||
|
};
|
||
|
|
||
|
#define FDI_HAS_READ(fdi) ((fdi)->fdi_revt != NULL)
|
||
|
#define FDI_HAS_WRITE(fdi) ((fdi)->fdi_wevt != NULL)
|
||
|
#define FDI_HAS_EVENTS(fdi) (FDI_HAS_READ(fdi) || FDI_HAS_WRITE(fdi))
|
||
|
#define FDI_TO_SYSEVENTS(fdi) (FDI_HAS_READ(fdi) ? POLLIN : 0) | \
|
||
|
(FDI_HAS_WRITE(fdi) ? POLLOUT : 0)
|
||
|
|
||
|
struct evport_data {
|
||
|
int ed_port; /* event port for system events */
|
||
|
int ed_nevents; /* number of allocated fdi's */
|
||
|
struct fd_info *ed_fds; /* allocated fdi table */
|
||
|
/* fdi's that we need to reassoc */
|
||
|
int ed_pending[EVENTS_PER_GETN]; /* fd's with pending events */
|
||
|
};
|
||
|
|
||
|
static void* evport_init (struct event_base *);
|
||
|
static int evport_add (void *, struct event *);
|
||
|
static int evport_del (void *, struct event *);
|
||
|
static int evport_dispatch (struct event_base *, void *, struct timeval *);
|
||
|
static void evport_dealloc (struct event_base *, void *);
|
||
|
|
||
|
const struct eventop evportops = {
|
||
|
"evport",
|
||
|
evport_init,
|
||
|
evport_add,
|
||
|
evport_del,
|
||
|
evport_dispatch,
|
||
|
evport_dealloc,
|
||
|
1 /* need reinit */
|
||
|
};
|
||
|
|
||
|
/*
|
||
|
* Initialize the event port implementation.
|
||
|
*/
|
||
|
|
||
|
static void*
|
||
|
evport_init(struct event_base *base)
|
||
|
{
|
||
|
struct evport_data *evpd;
|
||
|
int i;
|
||
|
/*
|
||
|
* Disable event ports when this environment variable is set
|
||
|
*/
|
||
|
if (evutil_getenv("EVENT_NOEVPORT"))
|
||
|
return (NULL);
|
||
|
|
||
|
if (!(evpd = calloc(1, sizeof(struct evport_data))))
|
||
|
return (NULL);
|
||
|
|
||
|
if ((evpd->ed_port = port_create()) == -1) {
|
||
|
free(evpd);
|
||
|
return (NULL);
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Initialize file descriptor structure
|
||
|
*/
|
||
|
evpd->ed_fds = calloc(DEFAULT_NFDS, sizeof(struct fd_info));
|
||
|
if (evpd->ed_fds == NULL) {
|
||
|
close(evpd->ed_port);
|
||
|
free(evpd);
|
||
|
return (NULL);
|
||
|
}
|
||
|
evpd->ed_nevents = DEFAULT_NFDS;
|
||
|
for (i = 0; i < EVENTS_PER_GETN; i++)
|
||
|
evpd->ed_pending[i] = -1;
|
||
|
|
||
|
evsignal_init(base);
|
||
|
|
||
|
return (evpd);
|
||
|
}
|
||
|
|
||
|
#ifdef CHECK_INVARIANTS
|
||
|
/*
|
||
|
* Checks some basic properties about the evport_data structure. Because it
|
||
|
* checks all file descriptors, this function can be expensive when the maximum
|
||
|
* file descriptor ever used is rather large.
|
||
|
*/
|
||
|
|
||
|
static void
|
||
|
check_evportop(struct evport_data *evpd)
|
||
|
{
|
||
|
assert(evpd);
|
||
|
assert(evpd->ed_nevents > 0);
|
||
|
assert(evpd->ed_port > 0);
|
||
|
assert(evpd->ed_fds > 0);
|
||
|
|
||
|
/*
|
||
|
* Verify the integrity of the fd_info struct as well as the events to
|
||
|
* which it points (at least, that they're valid references and correct
|
||
|
* for their position in the structure).
|
||
|
*/
|
||
|
int i;
|
||
|
for (i = 0; i < evpd->ed_nevents; ++i) {
|
||
|
struct event *ev;
|
||
|
struct fd_info *fdi;
|
||
|
|
||
|
fdi = &evpd->ed_fds[i];
|
||
|
if ((ev = fdi->fdi_revt) != NULL) {
|
||
|
assert(ev->ev_fd == i);
|
||
|
}
|
||
|
if ((ev = fdi->fdi_wevt) != NULL) {
|
||
|
assert(ev->ev_fd == i);
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Verifies very basic integrity of a given port_event.
|
||
|
*/
|
||
|
static void
|
||
|
check_event(port_event_t* pevt)
|
||
|
{
|
||
|
/*
|
||
|
* We've only registered for PORT_SOURCE_FD events. The only
|
||
|
* other thing we can legitimately receive is PORT_SOURCE_ALERT,
|
||
|
* but since we're not using port_alert either, we can assume
|
||
|
* PORT_SOURCE_FD.
|
||
|
*/
|
||
|
assert(pevt->portev_source == PORT_SOURCE_FD);
|
||
|
assert(pevt->portev_user == NULL);
|
||
|
}
|
||
|
|
||
|
#else
|
||
|
#define check_evportop(epop)
|
||
|
#define check_event(pevt)
|
||
|
#endif /* CHECK_INVARIANTS */
|
||
|
|
||
|
/*
|
||
|
* Doubles the size of the allocated file descriptor array.
|
||
|
*/
|
||
|
static int
|
||
|
grow(struct evport_data *epdp, int factor)
|
||
|
{
|
||
|
struct fd_info *tmp;
|
||
|
int oldsize = epdp->ed_nevents;
|
||
|
int newsize = factor * oldsize;
|
||
|
assert(factor > 1);
|
||
|
|
||
|
check_evportop(epdp);
|
||
|
|
||
|
tmp = realloc(epdp->ed_fds, sizeof(struct fd_info) * newsize);
|
||
|
if (NULL == tmp)
|
||
|
return -1;
|
||
|
epdp->ed_fds = tmp;
|
||
|
memset((char*) (epdp->ed_fds + oldsize), 0,
|
||
|
(newsize - oldsize)*sizeof(struct fd_info));
|
||
|
epdp->ed_nevents = newsize;
|
||
|
|
||
|
check_evportop(epdp);
|
||
|
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
|
||
|
/*
|
||
|
* (Re)associates the given file descriptor with the event port. The OS events
|
||
|
* are specified (implicitly) from the fd_info struct.
|
||
|
*/
|
||
|
static int
|
||
|
reassociate(struct evport_data *epdp, struct fd_info *fdip, int fd)
|
||
|
{
|
||
|
int sysevents = FDI_TO_SYSEVENTS(fdip);
|
||
|
|
||
|
if (sysevents != 0) {
|
||
|
if (port_associate(epdp->ed_port, PORT_SOURCE_FD,
|
||
|
fd, sysevents, NULL) == -1) {
|
||
|
event_warn("port_associate");
|
||
|
return (-1);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
check_evportop(epdp);
|
||
|
|
||
|
return (0);
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Main event loop - polls port_getn for some number of events, and processes
|
||
|
* them.
|
||
|
*/
|
||
|
|
||
|
static int
|
||
|
evport_dispatch(struct event_base *base, void *arg, struct timeval *tv)
|
||
|
{
|
||
|
int i, res;
|
||
|
struct evport_data *epdp = arg;
|
||
|
port_event_t pevtlist[EVENTS_PER_GETN];
|
||
|
|
||
|
/*
|
||
|
* port_getn will block until it has at least nevents events. It will
|
||
|
* also return how many it's given us (which may be more than we asked
|
||
|
* for, as long as it's less than our maximum (EVENTS_PER_GETN)) in
|
||
|
* nevents.
|
||
|
*/
|
||
|
int nevents = 1;
|
||
|
|
||
|
/*
|
||
|
* We have to convert a struct timeval to a struct timespec
|
||
|
* (only difference is nanoseconds vs. microseconds). If no time-based
|
||
|
* events are active, we should wait for I/O (and tv == NULL).
|
||
|
*/
|
||
|
struct timespec ts;
|
||
|
struct timespec *ts_p = NULL;
|
||
|
if (tv != NULL) {
|
||
|
ts.tv_sec = tv->tv_sec;
|
||
|
ts.tv_nsec = tv->tv_usec * 1000;
|
||
|
ts_p = &ts;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Before doing anything else, we need to reassociate the events we hit
|
||
|
* last time which need reassociation. See comment at the end of the
|
||
|
* loop below.
|
||
|
*/
|
||
|
for (i = 0; i < EVENTS_PER_GETN; ++i) {
|
||
|
struct fd_info *fdi = NULL;
|
||
|
if (epdp->ed_pending[i] != -1) {
|
||
|
fdi = &(epdp->ed_fds[epdp->ed_pending[i]]);
|
||
|
}
|
||
|
|
||
|
if (fdi != NULL && FDI_HAS_EVENTS(fdi)) {
|
||
|
int fd = FDI_HAS_READ(fdi) ? fdi->fdi_revt->ev_fd :
|
||
|
fdi->fdi_wevt->ev_fd;
|
||
|
reassociate(epdp, fdi, fd);
|
||
|
epdp->ed_pending[i] = -1;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
if ((res = port_getn(epdp->ed_port, pevtlist, EVENTS_PER_GETN,
|
||
|
(unsigned int *) &nevents, ts_p)) == -1) {
|
||
|
if (errno == EINTR || errno == EAGAIN) {
|
||
|
evsignal_process(base);
|
||
|
return (0);
|
||
|
} else if (errno == ETIME) {
|
||
|
if (nevents == 0)
|
||
|
return (0);
|
||
|
} else {
|
||
|
event_warn("port_getn");
|
||
|
return (-1);
|
||
|
}
|
||
|
} else if (base->sig.evsignal_caught) {
|
||
|
evsignal_process(base);
|
||
|
}
|
||
|
|
||
|
event_debug(("%s: port_getn reports %d events", __func__, nevents));
|
||
|
|
||
|
for (i = 0; i < nevents; ++i) {
|
||
|
struct event *ev;
|
||
|
struct fd_info *fdi;
|
||
|
port_event_t *pevt = &pevtlist[i];
|
||
|
int fd = (int) pevt->portev_object;
|
||
|
|
||
|
check_evportop(epdp);
|
||
|
check_event(pevt);
|
||
|
epdp->ed_pending[i] = fd;
|
||
|
|
||
|
/*
|
||
|
* Figure out what kind of event it was
|
||
|
* (because we have to pass this to the callback)
|
||
|
*/
|
||
|
res = 0;
|
||
|
if (pevt->portev_events & POLLIN)
|
||
|
res |= EV_READ;
|
||
|
if (pevt->portev_events & POLLOUT)
|
||
|
res |= EV_WRITE;
|
||
|
|
||
|
/*
|
||
|
* Check for the error situations or a hangup situation
|
||
|
*/
|
||
|
if (pevt->portev_events & (POLLERR|POLLHUP|POLLNVAL))
|
||
|
res |= EV_READ|EV_WRITE;
|
||
|
|
||
|
assert(epdp->ed_nevents > fd);
|
||
|
fdi = &(epdp->ed_fds[fd]);
|
||
|
|
||
|
/*
|
||
|
* We now check for each of the possible events (READ
|
||
|
* or WRITE). Then, we activate the event (which will
|
||
|
* cause its callback to be executed).
|
||
|
*/
|
||
|
|
||
|
if ((res & EV_READ) && ((ev = fdi->fdi_revt) != NULL)) {
|
||
|
event_active(ev, res, 1);
|
||
|
}
|
||
|
|
||
|
if ((res & EV_WRITE) && ((ev = fdi->fdi_wevt) != NULL)) {
|
||
|
event_active(ev, res, 1);
|
||
|
}
|
||
|
} /* end of all events gotten */
|
||
|
|
||
|
check_evportop(epdp);
|
||
|
|
||
|
return (0);
|
||
|
}
|
||
|
|
||
|
|
||
|
/*
|
||
|
* Adds the given event (so that you will be notified when it happens via
|
||
|
* the callback function).
|
||
|
*/
|
||
|
|
||
|
static int
|
||
|
evport_add(void *arg, struct event *ev)
|
||
|
{
|
||
|
struct evport_data *evpd = arg;
|
||
|
struct fd_info *fdi;
|
||
|
int factor;
|
||
|
|
||
|
check_evportop(evpd);
|
||
|
|
||
|
/*
|
||
|
* Delegate, if it's not ours to handle.
|
||
|
*/
|
||
|
if (ev->ev_events & EV_SIGNAL)
|
||
|
return (evsignal_add(ev));
|
||
|
|
||
|
/*
|
||
|
* If necessary, grow the file descriptor info table
|
||
|
*/
|
||
|
|
||
|
factor = 1;
|
||
|
while (ev->ev_fd >= factor * evpd->ed_nevents)
|
||
|
factor *= 2;
|
||
|
|
||
|
if (factor > 1) {
|
||
|
if (-1 == grow(evpd, factor)) {
|
||
|
return (-1);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
fdi = &evpd->ed_fds[ev->ev_fd];
|
||
|
if (ev->ev_events & EV_READ)
|
||
|
fdi->fdi_revt = ev;
|
||
|
if (ev->ev_events & EV_WRITE)
|
||
|
fdi->fdi_wevt = ev;
|
||
|
|
||
|
return reassociate(evpd, fdi, ev->ev_fd);
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Removes the given event from the list of events to wait for.
|
||
|
*/
|
||
|
|
||
|
static int
|
||
|
evport_del(void *arg, struct event *ev)
|
||
|
{
|
||
|
struct evport_data *evpd = arg;
|
||
|
struct fd_info *fdi;
|
||
|
int i;
|
||
|
int associated = 1;
|
||
|
|
||
|
check_evportop(evpd);
|
||
|
|
||
|
/*
|
||
|
* Delegate, if it's not ours to handle
|
||
|
*/
|
||
|
if (ev->ev_events & EV_SIGNAL) {
|
||
|
return (evsignal_del(ev));
|
||
|
}
|
||
|
|
||
|
if (evpd->ed_nevents < ev->ev_fd) {
|
||
|
return (-1);
|
||
|
}
|
||
|
|
||
|
for (i = 0; i < EVENTS_PER_GETN; ++i) {
|
||
|
if (evpd->ed_pending[i] == ev->ev_fd) {
|
||
|
associated = 0;
|
||
|
break;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
fdi = &evpd->ed_fds[ev->ev_fd];
|
||
|
if (ev->ev_events & EV_READ)
|
||
|
fdi->fdi_revt = NULL;
|
||
|
if (ev->ev_events & EV_WRITE)
|
||
|
fdi->fdi_wevt = NULL;
|
||
|
|
||
|
if (associated) {
|
||
|
if (!FDI_HAS_EVENTS(fdi) &&
|
||
|
port_dissociate(evpd->ed_port, PORT_SOURCE_FD,
|
||
|
ev->ev_fd) == -1) {
|
||
|
/*
|
||
|
* Ignre EBADFD error the fd could have been closed
|
||
|
* before event_del() was called.
|
||
|
*/
|
||
|
if (errno != EBADFD) {
|
||
|
event_warn("port_dissociate");
|
||
|
return (-1);
|
||
|
}
|
||
|
} else {
|
||
|
if (FDI_HAS_EVENTS(fdi)) {
|
||
|
return (reassociate(evpd, fdi, ev->ev_fd));
|
||
|
}
|
||
|
}
|
||
|
} else {
|
||
|
if (fdi->fdi_revt == NULL && fdi->fdi_wevt == NULL) {
|
||
|
evpd->ed_pending[i] = -1;
|
||
|
}
|
||
|
}
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
|
||
|
static void
|
||
|
evport_dealloc(struct event_base *base, void *arg)
|
||
|
{
|
||
|
struct evport_data *evpd = arg;
|
||
|
|
||
|
evsignal_dealloc(base);
|
||
|
|
||
|
close(evpd->ed_port);
|
||
|
|
||
|
if (evpd->ed_fds)
|
||
|
free(evpd->ed_fds);
|
||
|
free(evpd);
|
||
|
}
|