mirror of
https://github.com/klzgrad/naiveproxy.git
synced 2024-11-24 22:36:09 +03:00
311 lines
8.5 KiB
C++
311 lines
8.5 KiB
C++
|
// Copyright (c) 2009 The Chromium Authors. All rights reserved.
|
||
|
// Use of this source code is governed by a BSD-style license that can be
|
||
|
// found in the LICENSE file.
|
||
|
|
||
|
#include "net/disk_cache/blockfile/bitmap.h"
|
||
|
|
||
|
#include <algorithm>
|
||
|
|
||
|
#include "base/logging.h"
|
||
|
|
||
|
namespace {
|
||
|
|
||
|
// Returns the number of trailing zeros.
|
||
|
int FindLSBSetNonZero(uint32_t word) {
|
||
|
// Get the LSB, put it on the exponent of a 32 bit float and remove the
|
||
|
// mantisa and the bias. This code requires IEEE 32 bit float compliance.
|
||
|
float f = static_cast<float>(word & -static_cast<int>(word));
|
||
|
|
||
|
// We use a union to go around strict-aliasing complains.
|
||
|
union {
|
||
|
float ieee_float;
|
||
|
uint32_t as_uint;
|
||
|
} x;
|
||
|
|
||
|
x.ieee_float = f;
|
||
|
return (x.as_uint >> 23) - 0x7f;
|
||
|
}
|
||
|
|
||
|
// Returns the index of the first bit set to |value| from |word|. This code
|
||
|
// assumes that we'll be able to find that bit.
|
||
|
int FindLSBNonEmpty(uint32_t word, bool value) {
|
||
|
// If we are looking for 0, negate |word| and look for 1.
|
||
|
if (!value)
|
||
|
word = ~word;
|
||
|
|
||
|
return FindLSBSetNonZero(word);
|
||
|
}
|
||
|
|
||
|
} // namespace
|
||
|
|
||
|
namespace disk_cache {
|
||
|
|
||
|
Bitmap::Bitmap(int num_bits, bool clear_bits)
|
||
|
: num_bits_(num_bits),
|
||
|
array_size_(RequiredArraySize(num_bits)),
|
||
|
alloc_(true) {
|
||
|
map_ = new uint32_t[array_size_];
|
||
|
|
||
|
// Initialize all of the bits.
|
||
|
if (clear_bits)
|
||
|
Clear();
|
||
|
}
|
||
|
|
||
|
Bitmap::Bitmap(uint32_t* map, int num_bits, int num_words)
|
||
|
: map_(map),
|
||
|
num_bits_(num_bits),
|
||
|
// If size is larger than necessary, trim because array_size_ is used
|
||
|
// as a bound by various methods.
|
||
|
array_size_(std::min(RequiredArraySize(num_bits), num_words)),
|
||
|
alloc_(false) {}
|
||
|
|
||
|
Bitmap::~Bitmap() {
|
||
|
if (alloc_)
|
||
|
delete [] map_;
|
||
|
}
|
||
|
|
||
|
void Bitmap::Resize(int num_bits, bool clear_bits) {
|
||
|
DCHECK(alloc_ || !map_);
|
||
|
const int old_maxsize = num_bits_;
|
||
|
const int old_array_size = array_size_;
|
||
|
array_size_ = RequiredArraySize(num_bits);
|
||
|
|
||
|
if (array_size_ != old_array_size) {
|
||
|
uint32_t* new_map = new uint32_t[array_size_];
|
||
|
// Always clear the unused bits in the last word.
|
||
|
new_map[array_size_ - 1] = 0;
|
||
|
memcpy(new_map, map_,
|
||
|
sizeof(*map_) * std::min(array_size_, old_array_size));
|
||
|
if (alloc_)
|
||
|
delete[] map_; // No need to check for NULL.
|
||
|
map_ = new_map;
|
||
|
alloc_ = true;
|
||
|
}
|
||
|
|
||
|
num_bits_ = num_bits;
|
||
|
if (old_maxsize < num_bits_ && clear_bits) {
|
||
|
SetRange(old_maxsize, num_bits_, false);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
void Bitmap::Set(int index, bool value) {
|
||
|
DCHECK_LT(index, num_bits_);
|
||
|
DCHECK_GE(index, 0);
|
||
|
const int i = index & (kIntBits - 1);
|
||
|
const int j = index / kIntBits;
|
||
|
if (value)
|
||
|
map_[j] |= (1 << i);
|
||
|
else
|
||
|
map_[j] &= ~(1 << i);
|
||
|
}
|
||
|
|
||
|
bool Bitmap::Get(int index) const {
|
||
|
DCHECK_LT(index, num_bits_);
|
||
|
DCHECK_GE(index, 0);
|
||
|
const int i = index & (kIntBits-1);
|
||
|
const int j = index / kIntBits;
|
||
|
return ((map_[j] & (1 << i)) != 0);
|
||
|
}
|
||
|
|
||
|
void Bitmap::Toggle(int index) {
|
||
|
DCHECK_LT(index, num_bits_);
|
||
|
DCHECK_GE(index, 0);
|
||
|
const int i = index & (kIntBits - 1);
|
||
|
const int j = index / kIntBits;
|
||
|
map_[j] ^= (1 << i);
|
||
|
}
|
||
|
|
||
|
void Bitmap::SetMapElement(int array_index, uint32_t value) {
|
||
|
DCHECK_LT(array_index, array_size_);
|
||
|
DCHECK_GE(array_index, 0);
|
||
|
map_[array_index] = value;
|
||
|
}
|
||
|
|
||
|
uint32_t Bitmap::GetMapElement(int array_index) const {
|
||
|
DCHECK_LT(array_index, array_size_);
|
||
|
DCHECK_GE(array_index, 0);
|
||
|
return map_[array_index];
|
||
|
}
|
||
|
|
||
|
void Bitmap::SetMap(const uint32_t* map, int size) {
|
||
|
memcpy(map_, map, std::min(size, array_size_) * sizeof(*map_));
|
||
|
}
|
||
|
|
||
|
void Bitmap::SetRange(int begin, int end, bool value) {
|
||
|
DCHECK_LE(begin, end);
|
||
|
int start_offset = begin & (kIntBits - 1);
|
||
|
if (start_offset) {
|
||
|
// Set the bits in the first word.
|
||
|
int len = std::min(end - begin, kIntBits - start_offset);
|
||
|
SetWordBits(begin, len, value);
|
||
|
begin += len;
|
||
|
}
|
||
|
|
||
|
if (begin == end)
|
||
|
return;
|
||
|
|
||
|
// Now set the bits in the last word.
|
||
|
int end_offset = end & (kIntBits - 1);
|
||
|
end -= end_offset;
|
||
|
SetWordBits(end, end_offset, value);
|
||
|
|
||
|
// Set all the words in the middle.
|
||
|
memset(map_ + (begin / kIntBits), (value ? 0xFF : 0x00),
|
||
|
((end / kIntBits) - (begin / kIntBits)) * sizeof(*map_));
|
||
|
}
|
||
|
|
||
|
// Return true if any bit between begin inclusive and end exclusive
|
||
|
// is set. 0 <= begin <= end <= bits() is required.
|
||
|
bool Bitmap::TestRange(int begin, int end, bool value) const {
|
||
|
DCHECK_LT(begin, num_bits_);
|
||
|
DCHECK_LE(end, num_bits_);
|
||
|
DCHECK_LE(begin, end);
|
||
|
DCHECK_GE(begin, 0);
|
||
|
DCHECK_GE(end, 0);
|
||
|
|
||
|
// Return false immediately if the range is empty.
|
||
|
if (begin >= end || end <= 0)
|
||
|
return false;
|
||
|
|
||
|
// Calculate the indices of the words containing the first and last bits,
|
||
|
// along with the positions of the bits within those words.
|
||
|
int word = begin / kIntBits;
|
||
|
int offset = begin & (kIntBits - 1);
|
||
|
int last_word = (end - 1) / kIntBits;
|
||
|
int last_offset = (end - 1) & (kIntBits - 1);
|
||
|
|
||
|
// If we are looking for zeros, negate the data from the map.
|
||
|
uint32_t this_word = map_[word];
|
||
|
if (!value)
|
||
|
this_word = ~this_word;
|
||
|
|
||
|
// If the range spans multiple words, discard the extraneous bits of the
|
||
|
// first word by shifting to the right, and then test the remaining bits.
|
||
|
if (word < last_word) {
|
||
|
if (this_word >> offset)
|
||
|
return true;
|
||
|
offset = 0;
|
||
|
|
||
|
word++;
|
||
|
// Test each of the "middle" words that lies completely within the range.
|
||
|
while (word < last_word) {
|
||
|
this_word = map_[word++];
|
||
|
if (!value)
|
||
|
this_word = ~this_word;
|
||
|
if (this_word)
|
||
|
return true;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
// Test the portion of the last word that lies within the range. (This logic
|
||
|
// also handles the case where the entire range lies within a single word.)
|
||
|
const uint32_t mask = ((2 << (last_offset - offset)) - 1) << offset;
|
||
|
|
||
|
this_word = map_[last_word];
|
||
|
if (!value)
|
||
|
this_word = ~this_word;
|
||
|
|
||
|
return (this_word & mask) != 0;
|
||
|
}
|
||
|
|
||
|
bool Bitmap::FindNextBit(int* index, int limit, bool value) const {
|
||
|
DCHECK_LT(*index, num_bits_);
|
||
|
DCHECK_LE(limit, num_bits_);
|
||
|
DCHECK_LE(*index, limit);
|
||
|
DCHECK_GE(*index, 0);
|
||
|
DCHECK_GE(limit, 0);
|
||
|
|
||
|
const int bit_index = *index;
|
||
|
if (bit_index >= limit || limit <= 0)
|
||
|
return false;
|
||
|
|
||
|
// From now on limit != 0, since if it was we would have returned false.
|
||
|
int word_index = bit_index >> kLogIntBits;
|
||
|
uint32_t one_word = map_[word_index];
|
||
|
|
||
|
// Simple optimization where we can immediately return true if the first
|
||
|
// bit is set. This helps for cases where many bits are set, and doesn't
|
||
|
// hurt too much if not.
|
||
|
if (Get(bit_index) == value)
|
||
|
return true;
|
||
|
|
||
|
const int first_bit_offset = bit_index & (kIntBits - 1);
|
||
|
|
||
|
// First word is special - we need to mask off leading bits.
|
||
|
uint32_t mask = 0xFFFFFFFF << first_bit_offset;
|
||
|
if (value) {
|
||
|
one_word &= mask;
|
||
|
} else {
|
||
|
one_word |= ~mask;
|
||
|
}
|
||
|
|
||
|
uint32_t empty_value = value ? 0 : 0xFFFFFFFF;
|
||
|
|
||
|
// Loop through all but the last word. Note that 'limit' is one
|
||
|
// past the last bit we want to check, and we don't want to read
|
||
|
// past the end of "words". E.g. if num_bits_ == 32 only words[0] is
|
||
|
// valid, so we want to avoid reading words[1] when limit == 32.
|
||
|
const int last_word_index = (limit - 1) >> kLogIntBits;
|
||
|
while (word_index < last_word_index) {
|
||
|
if (one_word != empty_value) {
|
||
|
*index = (word_index << kLogIntBits) + FindLSBNonEmpty(one_word, value);
|
||
|
return true;
|
||
|
}
|
||
|
one_word = map_[++word_index];
|
||
|
}
|
||
|
|
||
|
// Last word is special - we may need to mask off trailing bits. Note that
|
||
|
// 'limit' is one past the last bit we want to check, and if limit is a
|
||
|
// multiple of 32 we want to check all bits in this word.
|
||
|
const int last_bit_offset = (limit - 1) & (kIntBits - 1);
|
||
|
mask = 0xFFFFFFFE << last_bit_offset;
|
||
|
if (value) {
|
||
|
one_word &= ~mask;
|
||
|
} else {
|
||
|
one_word |= mask;
|
||
|
}
|
||
|
if (one_word != empty_value) {
|
||
|
*index = (word_index << kLogIntBits) + FindLSBNonEmpty(one_word, value);
|
||
|
return true;
|
||
|
}
|
||
|
return false;
|
||
|
}
|
||
|
|
||
|
int Bitmap::FindBits(int* index, int limit, bool value) const {
|
||
|
DCHECK_LT(*index, num_bits_);
|
||
|
DCHECK_LE(limit, num_bits_);
|
||
|
DCHECK_LE(*index, limit);
|
||
|
DCHECK_GE(*index, 0);
|
||
|
DCHECK_GE(limit, 0);
|
||
|
|
||
|
if (!FindNextBit(index, limit, value))
|
||
|
return false;
|
||
|
|
||
|
// Now see how many bits have the same value.
|
||
|
int end = *index;
|
||
|
if (!FindNextBit(&end, limit, !value))
|
||
|
return limit - *index;
|
||
|
|
||
|
return end - *index;
|
||
|
}
|
||
|
|
||
|
void Bitmap::SetWordBits(int start, int len, bool value) {
|
||
|
DCHECK_LT(len, kIntBits);
|
||
|
DCHECK_GE(len, 0);
|
||
|
if (!len)
|
||
|
return;
|
||
|
|
||
|
int word = start / kIntBits;
|
||
|
int offset = start % kIntBits;
|
||
|
|
||
|
uint32_t to_add = 0xffffffff << len;
|
||
|
to_add = (~to_add) << offset;
|
||
|
if (value) {
|
||
|
map_[word] |= to_add;
|
||
|
} else {
|
||
|
map_[word] &= ~to_add;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
} // namespace disk_cache
|