naiveproxy/net/ntlm/ntlm.cc

391 lines
16 KiB
C++
Raw Normal View History

2018-01-28 19:30:36 +03:00
// Copyright 2017 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "net/ntlm/ntlm.h"
#include <string.h>
#include "base/logging.h"
#include "base/md5.h"
#include "base/strings/utf_string_conversions.h"
#include "net/base/net_string_util.h"
#include "net/ntlm/ntlm_buffer_writer.h"
#include "third_party/boringssl/src/include/openssl/des.h"
#include "third_party/boringssl/src/include/openssl/hmac.h"
#include "third_party/boringssl/src/include/openssl/md4.h"
#include "third_party/boringssl/src/include/openssl/md5.h"
namespace net {
namespace ntlm {
namespace {
// Takes the parsed target info in |av_pairs| and performs the following
// actions.
//
// 1) If a |TargetInfoAvId::kTimestamp| AvPair exists, |server_timestamp|
// is set to the payload.
// 2) If |is_mic_enabled| is true, the existing |TargetInfoAvId::kFlags| AvPair
// will have the |TargetInfoAvFlags::kMicPresent| bit set. If an existing
// flags AvPair does not already exist, a new one is added with the value of
// |TargetInfoAvFlags::kMicPresent|.
// 3) If |is_epa_enabled| is true, two new AvPair entries will be added to
// |av_pairs|. The first will be of type |TargetInfoAvId::kChannelBindings|
// and contains MD5(|channel_bindings|) as the payload. The second will be
// of type |TargetInfoAvId::kTargetName| and contains |spn| as a little
// endian UTF16 string.
// 4) Sets |target_info_len| to the size of |av_pairs| when serialized into
// a payload.
void UpdateTargetInfoAvPairs(bool is_mic_enabled,
bool is_epa_enabled,
const std::string& channel_bindings,
const std::string& spn,
std::vector<AvPair>* av_pairs,
uint64_t* server_timestamp,
size_t* target_info_len) {
// Do a pass to update flags and calculate current length and
// pull out the server timestamp if it is there.
*server_timestamp = UINT64_MAX;
*target_info_len = 0;
bool need_flags_added = is_mic_enabled;
for (AvPair& pair : *av_pairs) {
*target_info_len += pair.avlen + kAvPairHeaderLen;
switch (pair.avid) {
case TargetInfoAvId::kFlags:
// The parsing phase already set the payload to the |flags| field.
if (is_mic_enabled) {
pair.flags = pair.flags | TargetInfoAvFlags::kMicPresent;
}
need_flags_added = false;
break;
case TargetInfoAvId::kTimestamp:
// The parsing phase already set the payload to the |timestamp| field.
*server_timestamp = pair.timestamp;
break;
case TargetInfoAvId::kEol:
case TargetInfoAvId::kChannelBindings:
case TargetInfoAvId::kTargetName:
// The terminator, |kEol|, should already have been removed from the
// end of the list and would have been rejected if it has been inside
// the list. Additionally |kChannelBindings| and |kTargetName| pairs
// would have been rejected during the initial parsing. See
// |NtlmBufferReader::ReadTargetInfo|.
NOTREACHED();
break;
default:
// Ignore entries we don't care about.
break;
}
}
if (need_flags_added) {
DCHECK(is_mic_enabled);
AvPair flags_pair(TargetInfoAvId::kFlags, sizeof(uint32_t));
flags_pair.flags = TargetInfoAvFlags::kMicPresent;
av_pairs->push_back(flags_pair);
*target_info_len += kAvPairHeaderLen + flags_pair.avlen;
}
if (is_epa_enabled) {
Buffer channel_bindings_hash(kChannelBindingsHashLen, 0);
// Hash the channel bindings if they exist otherwise they remain zeros.
if (!channel_bindings.empty()) {
GenerateChannelBindingHashV2(channel_bindings, &channel_bindings_hash[0]);
}
av_pairs->emplace_back(TargetInfoAvId::kChannelBindings,
std::move(channel_bindings_hash));
// Convert the SPN to little endian unicode.
base::string16 spn16 = base::UTF8ToUTF16(spn);
NtlmBufferWriter spn_writer(spn16.length() * 2);
bool spn_writer_result =
spn_writer.WriteUtf16String(spn16) && spn_writer.IsEndOfBuffer();
DCHECK(spn_writer_result);
av_pairs->emplace_back(TargetInfoAvId::kTargetName, spn_writer.Pass());
// Add the length of the two new AV Pairs to the total length.
*target_info_len +=
(2 * kAvPairHeaderLen) + kChannelBindingsHashLen + (spn16.length() * 2);
}
// Add extra space for the terminator at the end.
*target_info_len += kAvPairHeaderLen;
}
Buffer WriteUpdatedTargetInfo(const std::vector<AvPair>& av_pairs,
size_t updated_target_info_len) {
bool result = true;
NtlmBufferWriter writer(updated_target_info_len);
for (const AvPair& pair : av_pairs) {
result = writer.WriteAvPair(pair);
DCHECK(result);
}
result = writer.WriteAvPairTerminator() && writer.IsEndOfBuffer();
DCHECK(result);
return writer.Pass();
}
// Reads 7 bytes (56 bits) from |key_56| and writes them into 8 bytes of
// |key_64| with 7 bits in every byte. The least significant bits are
// undefined and a subsequent operation will set those bits with a parity bit.
// |key_56| must contain 7 bytes.
// |key_64| must contain 8 bytes.
void Splay56To64(const uint8_t* key_56, uint8_t* key_64) {
key_64[0] = key_56[0];
key_64[1] = key_56[0] << 7 | key_56[1] >> 1;
key_64[2] = key_56[1] << 6 | key_56[2] >> 2;
key_64[3] = key_56[2] << 5 | key_56[3] >> 3;
key_64[4] = key_56[3] << 4 | key_56[4] >> 4;
key_64[5] = key_56[4] << 3 | key_56[5] >> 5;
key_64[6] = key_56[5] << 2 | key_56[6] >> 6;
key_64[7] = key_56[6] << 1;
}
} // namespace
void Create3DesKeysFromNtlmHash(const uint8_t* ntlm_hash, uint8_t* keys) {
// Put the first 112 bits from |ntlm_hash| into the first 16 bytes of
// |keys|.
Splay56To64(ntlm_hash, keys);
Splay56To64(ntlm_hash + 7, keys + 8);
// Put the next 2x 7 bits in bytes 16 and 17 of |keys|, then
// the last 2 bits in byte 18, then zero pad the rest of the final key.
keys[16] = ntlm_hash[14];
keys[17] = ntlm_hash[14] << 7 | ntlm_hash[15] >> 1;
keys[18] = ntlm_hash[15] << 6;
memset(keys + 19, 0, 5);
}
void GenerateNtlmHashV1(const base::string16& password, uint8_t* hash) {
size_t length = password.length() * 2;
NtlmBufferWriter writer(length);
// The writer will handle the big endian case if necessary.
bool result = writer.WriteUtf16String(password) && writer.IsEndOfBuffer();
DCHECK(result);
MD4(writer.GetBuffer().data(), writer.GetLength(), hash);
}
void GenerateResponseDesl(const uint8_t* hash,
const uint8_t* challenge,
uint8_t* response) {
constexpr size_t block_count = 3;
constexpr size_t block_size = sizeof(DES_cblock);
static_assert(kChallengeLen == block_size,
"kChallengeLen must equal block_size");
static_assert(kResponseLenV1 == block_count * block_size,
"kResponseLenV1 must equal block_count * block_size");
const DES_cblock* challenge_block =
reinterpret_cast<const DES_cblock*>(challenge);
uint8_t keys[block_count * block_size];
// Map the NTLM hash to three 8 byte DES keys, with 7 bits of the key in each
// byte and the least significant bit set with odd parity. Then encrypt the
// 8 byte challenge with each of the three keys. This produces three 8 byte
// encrypted blocks into |response|.
Create3DesKeysFromNtlmHash(hash, keys);
for (size_t ix = 0; ix < block_count * block_size; ix += block_size) {
DES_cblock* key_block = reinterpret_cast<DES_cblock*>(keys + ix);
DES_cblock* response_block = reinterpret_cast<DES_cblock*>(response + ix);
DES_key_schedule key_schedule;
DES_set_odd_parity(key_block);
DES_set_key(key_block, &key_schedule);
DES_ecb_encrypt(challenge_block, response_block, &key_schedule,
DES_ENCRYPT);
}
}
void GenerateNtlmResponseV1(const base::string16& password,
const uint8_t* challenge,
uint8_t* ntlm_response) {
uint8_t ntlm_hash[kNtlmHashLen];
GenerateNtlmHashV1(password, ntlm_hash);
GenerateResponseDesl(ntlm_hash, challenge, ntlm_response);
}
void GenerateResponsesV1(const base::string16& password,
const uint8_t* server_challenge,
uint8_t* lm_response,
uint8_t* ntlm_response) {
GenerateNtlmResponseV1(password, server_challenge, ntlm_response);
// In NTLM v1 (with LMv1 disabled), the lm_response and ntlm_response are the
// same. So just copy the ntlm_response into the lm_response.
memcpy(lm_response, ntlm_response, kResponseLenV1);
}
void GenerateLMResponseV1WithSessionSecurity(const uint8_t* client_challenge,
uint8_t* lm_response) {
// In NTLM v1 with Session Security (aka NTLM2) the lm_response is 8 bytes of
// client challenge and 16 bytes of zeros. (See 3.3.1)
memcpy(lm_response, client_challenge, kChallengeLen);
memset(lm_response + kChallengeLen, 0, kResponseLenV1 - kChallengeLen);
}
void GenerateSessionHashV1WithSessionSecurity(const uint8_t* server_challenge,
const uint8_t* client_challenge,
uint8_t* session_hash) {
MD5_CTX ctx;
MD5_Init(&ctx);
MD5_Update(&ctx, server_challenge, kChallengeLen);
MD5_Update(&ctx, client_challenge, kChallengeLen);
MD5_Final(session_hash, &ctx);
}
void GenerateNtlmResponseV1WithSessionSecurity(const base::string16& password,
const uint8_t* server_challenge,
const uint8_t* client_challenge,
uint8_t* ntlm_response) {
// Generate the NTLMv1 Hash.
uint8_t ntlm_hash[kNtlmHashLen];
GenerateNtlmHashV1(password, ntlm_hash);
// Generate the NTLMv1 Session Hash.
uint8_t session_hash[kNtlmHashLen];
GenerateSessionHashV1WithSessionSecurity(server_challenge, client_challenge,
session_hash);
// Only the first 8 bytes of |session_hash| are actually used.
GenerateResponseDesl(ntlm_hash, session_hash, ntlm_response);
}
void GenerateResponsesV1WithSessionSecurity(const base::string16& password,
const uint8_t* server_challenge,
const uint8_t* client_challenge,
uint8_t* lm_response,
uint8_t* ntlm_response) {
GenerateLMResponseV1WithSessionSecurity(client_challenge, lm_response);
GenerateNtlmResponseV1WithSessionSecurity(password, server_challenge,
client_challenge, ntlm_response);
}
void GenerateNtlmHashV2(const base::string16& domain,
const base::string16& username,
const base::string16& password,
uint8_t* v2_hash) {
// NOTE: According to [MS-NLMP] Section 3.3.2 only the username and not the
// domain is uppercased.
base::string16 upper_username;
bool result = ToUpper(username, &upper_username);
DCHECK(result);
uint8_t v1_hash[kNtlmHashLen];
GenerateNtlmHashV1(password, v1_hash);
NtlmBufferWriter input_writer((upper_username.length() + domain.length()) *
2);
bool writer_result = input_writer.WriteUtf16String(upper_username) &&
input_writer.WriteUtf16String(domain) &&
input_writer.IsEndOfBuffer();
DCHECK(writer_result);
unsigned int outlen = kNtlmHashLen;
v2_hash =
HMAC(EVP_md5(), v1_hash, sizeof(v1_hash), input_writer.GetBuffer().data(),
input_writer.GetLength(), v2_hash, &outlen);
DCHECK_NE(nullptr, v2_hash);
DCHECK_EQ(sizeof(v1_hash), outlen);
}
Buffer GenerateProofInputV2(uint64_t timestamp,
const uint8_t* client_challenge) {
NtlmBufferWriter writer(kProofInputLenV2);
bool result = writer.WriteUInt16(kProofInputVersionV2) &&
writer.WriteZeros(6) && writer.WriteUInt64(timestamp) &&
writer.WriteBytes(client_challenge, kChallengeLen) &&
writer.WriteZeros(4) && writer.IsEndOfBuffer();
DCHECK(result);
return writer.Pass();
}
void GenerateNtlmProofV2(const uint8_t* v2_hash,
const uint8_t* server_challenge,
const Buffer& v2_input,
const Buffer& target_info,
uint8_t* v2_proof) {
DCHECK_EQ(kProofInputLenV2, v2_input.size());
bssl::ScopedHMAC_CTX ctx;
HMAC_Init_ex(ctx.get(), v2_hash, kNtlmHashLen, EVP_md5(), NULL);
DCHECK_EQ(kNtlmProofLenV2, HMAC_size(ctx.get()));
HMAC_Update(ctx.get(), server_challenge, kChallengeLen);
HMAC_Update(ctx.get(), v2_input.data(), v2_input.size());
HMAC_Update(ctx.get(), target_info.data(), target_info.size());
const uint32_t zero = 0;
HMAC_Update(ctx.get(), reinterpret_cast<const uint8_t*>(&zero),
sizeof(uint32_t));
HMAC_Final(ctx.get(), v2_proof, nullptr);
}
void GenerateSessionBaseKeyV2(const uint8_t* v2_hash,
const uint8_t* v2_proof,
uint8_t* session_key) {
unsigned int outlen = kSessionKeyLenV2;
session_key = HMAC(EVP_md5(), v2_hash, kNtlmHashLen, v2_proof,
kNtlmProofLenV2, session_key, &outlen);
DCHECK_NE(nullptr, session_key);
DCHECK_EQ(kSessionKeyLenV2, outlen);
}
void GenerateChannelBindingHashV2(const std::string& channel_bindings,
uint8_t* channel_bindings_hash) {
NtlmBufferWriter writer(kEpaUnhashedStructHeaderLen);
bool result = writer.WriteZeros(16) &&
writer.WriteUInt32(channel_bindings.length()) &&
writer.IsEndOfBuffer();
DCHECK(result);
MD5_CTX ctx;
MD5_Init(&ctx);
MD5_Update(&ctx, writer.GetBuffer().data(), writer.GetBuffer().size());
MD5_Update(&ctx, channel_bindings.data(), channel_bindings.size());
MD5_Final(channel_bindings_hash, &ctx);
}
void GenerateMicV2(const uint8_t* session_key,
const Buffer& negotiate_msg,
const Buffer& challenge_msg,
const Buffer& authenticate_msg,
uint8_t* mic) {
bssl::ScopedHMAC_CTX ctx;
HMAC_Init_ex(ctx.get(), session_key, kNtlmHashLen, EVP_md5(), NULL);
DCHECK_EQ(kMicLenV2, HMAC_size(ctx.get()));
HMAC_Update(ctx.get(), negotiate_msg.data(), negotiate_msg.size());
HMAC_Update(ctx.get(), challenge_msg.data(), challenge_msg.size());
HMAC_Update(ctx.get(), authenticate_msg.data(), authenticate_msg.size());
HMAC_Final(ctx.get(), mic, nullptr);
}
#if defined(__clang__)
[[clang::optnone]] // TODO(crbug.com/769759) Clang crashes on this function.
#endif
NET_EXPORT_PRIVATE Buffer
GenerateUpdatedTargetInfo(bool is_mic_enabled,
bool is_epa_enabled,
const std::string& channel_bindings,
const std::string& spn,
const std::vector<AvPair>& av_pairs,
uint64_t* server_timestamp) {
size_t updated_target_info_len = 0;
std::vector<AvPair> updated_av_pairs(av_pairs);
UpdateTargetInfoAvPairs(is_mic_enabled, is_epa_enabled, channel_bindings, spn,
&updated_av_pairs, server_timestamp,
&updated_target_info_len);
return WriteUpdatedTargetInfo(updated_av_pairs, updated_target_info_len);
}
} // namespace ntlm
} // namespace net