naiveproxy/base/allocator/partition_allocator/partition_alloc.h

932 lines
38 KiB
C
Raw Normal View History

2018-01-28 19:30:36 +03:00
// Copyright (c) 2013 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#ifndef BASE_ALLOCATOR_PARTITION_ALLOCATOR_PARTITION_ALLOC_H
#define BASE_ALLOCATOR_PARTITION_ALLOCATOR_PARTITION_ALLOC_H
// DESCRIPTION
// partitionAlloc() / PartitionAllocGeneric() and PartitionFree() /
// PartitionFreeGeneric() are approximately analagous to malloc() and free().
//
// The main difference is that a PartitionRoot / PartitionRootGeneric object
// must be supplied to these functions, representing a specific "heap partition"
// that will be used to satisfy the allocation. Different partitions are
// guaranteed to exist in separate address spaces, including being separate from
// the main system heap. If the contained objects are all freed, physical memory
// is returned to the system but the address space remains reserved.
// See PartitionAlloc.md for other security properties PartitionAlloc provides.
//
// THE ONLY LEGITIMATE WAY TO OBTAIN A PartitionRoot IS THROUGH THE
// SizeSpecificPartitionAllocator / PartitionAllocatorGeneric classes. To
// minimize the instruction count to the fullest extent possible, the
// PartitionRoot is really just a header adjacent to other data areas provided
// by the allocator class.
//
// The partitionAlloc() variant of the API has the following caveats:
// - Allocations and frees against a single partition must be single threaded.
// - Allocations must not exceed a max size, chosen at compile-time via a
// templated parameter to PartitionAllocator.
// - Allocation sizes must be aligned to the system pointer size.
// - Allocations are bucketed exactly according to size.
//
// And for PartitionAllocGeneric():
// - Multi-threaded use against a single partition is ok; locking is handled.
// - Allocations of any arbitrary size can be handled (subject to a limit of
// INT_MAX bytes for security reasons).
// - Bucketing is by approximate size, for example an allocation of 4000 bytes
// might be placed into a 4096-byte bucket. Bucket sizes are chosen to try and
// keep worst-case waste to ~10%.
//
// The allocators are designed to be extremely fast, thanks to the following
// properties and design:
// - Just two single (reasonably predicatable) branches in the hot / fast path
// for both allocating and (significantly) freeing.
// - A minimal number of operations in the hot / fast path, with the slow paths
// in separate functions, leading to the possibility of inlining.
// - Each partition page (which is usually multiple physical pages) has a
// metadata structure which allows fast mapping of free() address to an
// underlying bucket.
// - Supports a lock-free API for fast performance in single-threaded cases.
// - The freelist for a given bucket is split across a number of partition
// pages, enabling various simple tricks to try and minimize fragmentation.
// - Fine-grained bucket sizes leading to less waste and better packing.
//
// The following security properties could be investigated in the future:
// - Per-object bucketing (instead of per-size) is mostly available at the API,
// but not used yet.
// - No randomness of freelist entries or bucket position.
// - Better checking for wild pointers in free().
// - Better freelist masking function to guarantee fault on 32-bit.
#include <limits.h>
#include <string.h>
#include "base/allocator/partition_allocator/page_allocator.h"
#include "base/allocator/partition_allocator/spin_lock.h"
#include "base/base_export.h"
#include "base/bits.h"
#include "base/compiler_specific.h"
#include "base/logging.h"
#include "base/macros.h"
#include "base/sys_byteorder.h"
#include "build/build_config.h"
#if defined(MEMORY_TOOL_REPLACES_ALLOCATOR)
#include <stdlib.h>
#endif
namespace base {
// Allocation granularity of sizeof(void*) bytes.
static const size_t kAllocationGranularity = sizeof(void*);
static const size_t kAllocationGranularityMask = kAllocationGranularity - 1;
static const size_t kBucketShift = (kAllocationGranularity == 8) ? 3 : 2;
// Underlying partition storage pages are a power-of-two size. It is typical
// for a partition page to be based on multiple system pages. Most references to
// "page" refer to partition pages.
// We also have the concept of "super pages" -- these are the underlying system
// allocations we make. Super pages contain multiple partition pages inside them
// and include space for a small amount of metadata per partition page.
// Inside super pages, we store "slot spans". A slot span is a continguous range
// of one or more partition pages that stores allocations of the same size.
// Slot span sizes are adjusted depending on the allocation size, to make sure
// the packing does not lead to unused (wasted) space at the end of the last
// system page of the span. For our current max slot span size of 64k and other
// constant values, we pack _all_ PartitionAllocGeneric() sizes perfectly up
// against the end of a system page.
static const size_t kPartitionPageShift = 14; // 16KB
static const size_t kPartitionPageSize = 1 << kPartitionPageShift;
static const size_t kPartitionPageOffsetMask = kPartitionPageSize - 1;
static const size_t kPartitionPageBaseMask = ~kPartitionPageOffsetMask;
static const size_t kMaxPartitionPagesPerSlotSpan = 4;
// To avoid fragmentation via never-used freelist entries, we hand out partition
// freelist sections gradually, in units of the dominant system page size.
// What we're actually doing is avoiding filling the full partition page (16 KB)
// with freelist pointers right away. Writing freelist pointers will fault and
// dirty a private page, which is very wasteful if we never actually store
// objects there.
static const size_t kNumSystemPagesPerPartitionPage =
kPartitionPageSize / kSystemPageSize;
static const size_t kMaxSystemPagesPerSlotSpan =
kNumSystemPagesPerPartitionPage * kMaxPartitionPagesPerSlotSpan;
// We reserve virtual address space in 2MB chunks (aligned to 2MB as well).
// These chunks are called "super pages". We do this so that we can store
// metadata in the first few pages of each 2MB aligned section. This leads to
// a very fast free(). We specifically choose 2MB because this virtual address
// block represents a full but single PTE allocation on ARM, ia32 and x64.
//
// The layout of the super page is as follows. The sizes below are the same
// for 32 bit and 64 bit.
//
// | Guard page (4KB) |
// | Metadata page (4KB) |
// | Guard pages (8KB) |
// | Slot span |
// | Slot span |
// | ... |
// | Slot span |
// | Guard page (4KB) |
//
// - Each slot span is a contiguous range of one or more PartitionPages.
// - The metadata page has the following format. Note that the PartitionPage
// that is not at the head of a slot span is "unused". In other words,
// the metadata for the slot span is stored only in the first PartitionPage
// of the slot span. Metadata accesses to other PartitionPages are
// redirected to the first PartitionPage.
//
// | SuperPageExtentEntry (32B) |
// | PartitionPage of slot span 1 (32B, used) |
// | PartitionPage of slot span 1 (32B, unused) |
// | PartitionPage of slot span 1 (32B, unused) |
// | PartitionPage of slot span 2 (32B, used) |
// | PartitionPage of slot span 3 (32B, used) |
// | ... |
// | PartitionPage of slot span N (32B, unused) |
//
// A direct mapped page has a similar layout to fake it looking like a super
// page:
//
// | Guard page (4KB) |
// | Metadata page (4KB) |
// | Guard pages (8KB) |
// | Direct mapped object |
// | Guard page (4KB) |
//
// - The metadata page has the following layout:
//
// | SuperPageExtentEntry (32B) |
// | PartitionPage (32B) |
// | PartitionBucket (32B) |
// | PartitionDirectMapExtent (8B) |
static const size_t kSuperPageShift = 21; // 2MB
static const size_t kSuperPageSize = 1 << kSuperPageShift;
static const size_t kSuperPageOffsetMask = kSuperPageSize - 1;
static const size_t kSuperPageBaseMask = ~kSuperPageOffsetMask;
static const size_t kNumPartitionPagesPerSuperPage =
kSuperPageSize / kPartitionPageSize;
static const size_t kPageMetadataShift = 5; // 32 bytes per partition page.
static const size_t kPageMetadataSize = 1 << kPageMetadataShift;
// The following kGeneric* constants apply to the generic variants of the API.
// The "order" of an allocation is closely related to the power-of-two size of
// the allocation. More precisely, the order is the bit index of the
// most-significant-bit in the allocation size, where the bit numbers starts
// at index 1 for the least-significant-bit.
// In terms of allocation sizes, order 0 covers 0, order 1 covers 1, order 2
// covers 2->3, order 3 covers 4->7, order 4 covers 8->15.
static const size_t kGenericMinBucketedOrder = 4; // 8 bytes.
static const size_t kGenericMaxBucketedOrder =
20; // Largest bucketed order is 1<<(20-1) (storing 512KB -> almost 1MB)
static const size_t kGenericNumBucketedOrders =
(kGenericMaxBucketedOrder - kGenericMinBucketedOrder) + 1;
// Eight buckets per order (for the higher orders), e.g. order 8 is 128, 144,
// 160, ..., 240:
static const size_t kGenericNumBucketsPerOrderBits = 3;
static const size_t kGenericNumBucketsPerOrder =
1 << kGenericNumBucketsPerOrderBits;
static const size_t kGenericNumBuckets =
kGenericNumBucketedOrders * kGenericNumBucketsPerOrder;
static const size_t kGenericSmallestBucket = 1
<< (kGenericMinBucketedOrder - 1);
static const size_t kGenericMaxBucketSpacing =
1 << ((kGenericMaxBucketedOrder - 1) - kGenericNumBucketsPerOrderBits);
static const size_t kGenericMaxBucketed =
(1 << (kGenericMaxBucketedOrder - 1)) +
((kGenericNumBucketsPerOrder - 1) * kGenericMaxBucketSpacing);
static const size_t kGenericMinDirectMappedDownsize =
kGenericMaxBucketed +
1; // Limit when downsizing a direct mapping using realloc().
static const size_t kGenericMaxDirectMapped = INT_MAX - kSystemPageSize;
static const size_t kBitsPerSizeT = sizeof(void*) * CHAR_BIT;
// Constants for the memory reclaim logic.
static const size_t kMaxFreeableSpans = 16;
// If the total size in bytes of allocated but not committed pages exceeds this
// value (probably it is a "out of virtual address space" crash),
// a special crash stack trace is generated at |partitionOutOfMemory|.
// This is to distinguish "out of virtual address space" from
// "out of physical memory" in crash reports.
static const size_t kReasonableSizeOfUnusedPages = 1024 * 1024 * 1024; // 1GiB
#if DCHECK_IS_ON()
// These two byte values match tcmalloc.
static const unsigned char kUninitializedByte = 0xAB;
static const unsigned char kFreedByte = 0xCD;
static const size_t kCookieSize =
16; // Handles alignment up to XMM instructions on Intel.
static const unsigned char kCookieValue[kCookieSize] = {
0xDE, 0xAD, 0xBE, 0xEF, 0xCA, 0xFE, 0xD0, 0x0D,
0x13, 0x37, 0xF0, 0x05, 0xBA, 0x11, 0xAB, 0x1E};
#endif
struct PartitionBucket;
struct PartitionRootBase;
struct PartitionFreelistEntry {
PartitionFreelistEntry* next;
};
// Some notes on page states. A page can be in one of four major states:
// 1) Active.
// 2) Full.
// 3) Empty.
// 4) Decommitted.
// An active page has available free slots. A full page has no free slots. An
// empty page has no free slots, and a decommitted page is an empty page that
// had its backing memory released back to the system.
// There are two linked lists tracking the pages. The "active page" list is an
// approximation of a list of active pages. It is an approximation because
// full, empty and decommitted pages may briefly be present in the list until
// we next do a scan over it.
// The "empty page" list is an accurate list of pages which are either empty
// or decommitted.
//
// The significant page transitions are:
// - free() will detect when a full page has a slot free()'d and immediately
// return the page to the head of the active list.
// - free() will detect when a page is fully emptied. It _may_ add it to the
// empty list or it _may_ leave it on the active list until a future list scan.
// - malloc() _may_ scan the active page list in order to fulfil the request.
// If it does this, full, empty and decommitted pages encountered will be
// booted out of the active list. If there are no suitable active pages found,
// an empty or decommitted page (if one exists) will be pulled from the empty
// list on to the active list.
struct PartitionPage {
PartitionFreelistEntry* freelist_head;
PartitionPage* next_page;
PartitionBucket* bucket;
// Deliberately signed, 0 for empty or decommitted page, -n for full pages:
int16_t num_allocated_slots;
uint16_t num_unprovisioned_slots;
uint16_t page_offset;
int16_t empty_cache_index; // -1 if not in the empty cache.
};
struct PartitionBucket {
// Accessed most in hot path => goes first.
PartitionPage* active_pages_head;
PartitionPage* empty_pages_head;
PartitionPage* decommitted_pages_head;
uint32_t slot_size;
unsigned num_system_pages_per_slot_span : 8;
unsigned num_full_pages : 24;
};
// An "extent" is a span of consecutive superpages. We link to the partition's
// next extent (if there is one) at the very start of a superpage's metadata
// area.
struct PartitionSuperPageExtentEntry {
PartitionRootBase* root;
char* super_page_base;
char* super_pages_end;
PartitionSuperPageExtentEntry* next;
};
struct PartitionDirectMapExtent {
PartitionDirectMapExtent* next_extent;
PartitionDirectMapExtent* prev_extent;
PartitionBucket* bucket;
size_t map_size; // Mapped size, not including guard pages and meta-data.
};
struct BASE_EXPORT PartitionRootBase {
PartitionRootBase();
virtual ~PartitionRootBase();
size_t total_size_of_committed_pages = 0;
size_t total_size_of_super_pages = 0;
size_t total_size_of_direct_mapped_pages = 0;
// Invariant: total_size_of_committed_pages <=
// total_size_of_super_pages +
// total_size_of_direct_mapped_pages.
unsigned num_buckets = 0;
unsigned max_allocation = 0;
bool initialized = false;
char* next_super_page = nullptr;
char* next_partition_page = nullptr;
char* next_partition_page_end = nullptr;
PartitionSuperPageExtentEntry* current_extent = nullptr;
PartitionSuperPageExtentEntry* first_extent = nullptr;
PartitionDirectMapExtent* direct_map_list = nullptr;
PartitionPage* global_empty_page_ring[kMaxFreeableSpans] = {};
int16_t global_empty_page_ring_index = 0;
uintptr_t inverted_self = 0;
// gOomHandlingFunction is invoked when ParitionAlloc hits OutOfMemory.
static void (*gOomHandlingFunction)();
};
// Never instantiate a PartitionRoot directly, instead use PartitionAlloc.
struct BASE_EXPORT PartitionRoot : public PartitionRootBase {
PartitionRoot();
~PartitionRoot() override;
// The PartitionAlloc templated class ensures the following is correct.
ALWAYS_INLINE PartitionBucket* buckets() {
return reinterpret_cast<PartitionBucket*>(this + 1);
}
ALWAYS_INLINE const PartitionBucket* buckets() const {
return reinterpret_cast<const PartitionBucket*>(this + 1);
}
};
// Never instantiate a PartitionRootGeneric directly, instead use
// PartitionAllocatorGeneric.
struct BASE_EXPORT PartitionRootGeneric : public PartitionRootBase {
PartitionRootGeneric();
~PartitionRootGeneric() override;
subtle::SpinLock lock;
// Some pre-computed constants.
size_t order_index_shifts[kBitsPerSizeT + 1] = {};
size_t order_sub_index_masks[kBitsPerSizeT + 1] = {};
// The bucket lookup table lets us map a size_t to a bucket quickly.
// The trailing +1 caters for the overflow case for very large allocation
// sizes. It is one flat array instead of a 2D array because in the 2D
// world, we'd need to index array[blah][max+1] which risks undefined
// behavior.
PartitionBucket*
bucket_lookups[((kBitsPerSizeT + 1) * kGenericNumBucketsPerOrder) + 1] =
{};
PartitionBucket buckets[kGenericNumBuckets] = {};
};
// Flags for PartitionAllocGenericFlags.
enum PartitionAllocFlags {
PartitionAllocReturnNull = 1 << 0,
};
// Struct used to retrieve total memory usage of a partition. Used by
// PartitionStatsDumper implementation.
struct PartitionMemoryStats {
size_t total_mmapped_bytes; // Total bytes mmaped from the system.
size_t total_committed_bytes; // Total size of commmitted pages.
size_t total_resident_bytes; // Total bytes provisioned by the partition.
size_t total_active_bytes; // Total active bytes in the partition.
size_t total_decommittable_bytes; // Total bytes that could be decommitted.
size_t total_discardable_bytes; // Total bytes that could be discarded.
};
// Struct used to retrieve memory statistics about a partition bucket. Used by
// PartitionStatsDumper implementation.
struct PartitionBucketMemoryStats {
bool is_valid; // Used to check if the stats is valid.
bool is_direct_map; // True if this is a direct mapping; size will not be
// unique.
uint32_t bucket_slot_size; // The size of the slot in bytes.
uint32_t allocated_page_size; // Total size the partition page allocated from
// the system.
uint32_t active_bytes; // Total active bytes used in the bucket.
uint32_t resident_bytes; // Total bytes provisioned in the bucket.
uint32_t decommittable_bytes; // Total bytes that could be decommitted.
uint32_t discardable_bytes; // Total bytes that could be discarded.
uint32_t num_full_pages; // Number of pages with all slots allocated.
uint32_t num_active_pages; // Number of pages that have at least one
// provisioned slot.
uint32_t num_empty_pages; // Number of pages that are empty
// but not decommitted.
uint32_t num_decommitted_pages; // Number of pages that are empty
// and decommitted.
};
// Interface that is passed to PartitionDumpStats and
// PartitionDumpStatsGeneric for using the memory statistics.
class BASE_EXPORT PartitionStatsDumper {
public:
// Called to dump total memory used by partition, once per partition.
virtual void PartitionDumpTotals(const char* partition_name,
const PartitionMemoryStats*) = 0;
// Called to dump stats about buckets, for each bucket.
virtual void PartitionsDumpBucketStats(const char* partition_name,
const PartitionBucketMemoryStats*) = 0;
};
BASE_EXPORT void PartitionAllocGlobalInit(void (*oom_handling_function)());
BASE_EXPORT void PartitionAllocInit(PartitionRoot*,
size_t num_buckets,
size_t max_allocation);
BASE_EXPORT void PartitionAllocGenericInit(PartitionRootGeneric*);
enum PartitionPurgeFlags {
// Decommitting the ring list of empty pages is reasonably fast.
PartitionPurgeDecommitEmptyPages = 1 << 0,
// Discarding unused system pages is slower, because it involves walking all
// freelists in all active partition pages of all buckets >= system page
// size. It often frees a similar amount of memory to decommitting the empty
// pages, though.
PartitionPurgeDiscardUnusedSystemPages = 1 << 1,
};
BASE_EXPORT void PartitionPurgeMemory(PartitionRoot*, int);
BASE_EXPORT void PartitionPurgeMemoryGeneric(PartitionRootGeneric*, int);
BASE_EXPORT NOINLINE void* PartitionAllocSlowPath(PartitionRootBase*,
int,
size_t,
PartitionBucket*);
BASE_EXPORT NOINLINE void PartitionFreeSlowPath(PartitionPage*);
BASE_EXPORT NOINLINE void* PartitionReallocGeneric(PartitionRootGeneric*,
void*,
size_t,
const char* type_name);
BASE_EXPORT void PartitionDumpStats(PartitionRoot*,
const char* partition_name,
bool is_light_dump,
PartitionStatsDumper*);
BASE_EXPORT void PartitionDumpStatsGeneric(PartitionRootGeneric*,
const char* partition_name,
bool is_light_dump,
PartitionStatsDumper*);
class BASE_EXPORT PartitionAllocHooks {
public:
typedef void AllocationHook(void* address, size_t, const char* type_name);
typedef void FreeHook(void* address);
// To unhook, call Set*Hook with nullptr.
static void SetAllocationHook(AllocationHook* hook) {
// Chained allocation hooks are not supported. Registering a non-null
// hook when a non-null hook is already registered indicates somebody is
// trying to overwrite a hook.
DCHECK(!hook || !allocation_hook_) << "Overwriting allocation hook";
allocation_hook_ = hook;
}
static void SetFreeHook(FreeHook* hook) {
DCHECK(!hook || !free_hook_) << "Overwriting free hook";
free_hook_ = hook;
}
static void AllocationHookIfEnabled(void* address,
size_t size,
const char* type_name) {
AllocationHook* hook = allocation_hook_;
if (UNLIKELY(hook != nullptr))
hook(address, size, type_name);
}
static void FreeHookIfEnabled(void* address) {
FreeHook* hook = free_hook_;
if (UNLIKELY(hook != nullptr))
hook(address);
}
static void ReallocHookIfEnabled(void* old_address,
void* new_address,
size_t size,
const char* type_name) {
// Report a reallocation as a free followed by an allocation.
AllocationHook* allocation_hook = allocation_hook_;
FreeHook* free_hook = free_hook_;
if (UNLIKELY(allocation_hook && free_hook)) {
free_hook(old_address);
allocation_hook(new_address, size, type_name);
}
}
private:
// Pointers to hook functions that PartitionAlloc will call on allocation and
// free if the pointers are non-null.
static AllocationHook* allocation_hook_;
static FreeHook* free_hook_;
};
ALWAYS_INLINE PartitionFreelistEntry* PartitionFreelistMask(
PartitionFreelistEntry* ptr) {
// We use bswap on little endian as a fast mask for two reasons:
// 1) If an object is freed and its vtable used where the attacker doesn't
// get the chance to run allocations between the free and use, the vtable
// dereference is likely to fault.
// 2) If the attacker has a linear buffer overflow and elects to try and
// corrupt a freelist pointer, partial pointer overwrite attacks are
// thwarted.
// For big endian, similar guarantees are arrived at with a negation.
#if defined(ARCH_CPU_BIG_ENDIAN)
uintptr_t masked = ~reinterpret_cast<uintptr_t>(ptr);
#else
uintptr_t masked = ByteSwapUintPtrT(reinterpret_cast<uintptr_t>(ptr));
#endif
return reinterpret_cast<PartitionFreelistEntry*>(masked);
}
ALWAYS_INLINE size_t PartitionCookieSizeAdjustAdd(size_t size) {
#if DCHECK_IS_ON()
// Add space for cookies, checking for integer overflow. TODO(palmer):
// Investigate the performance and code size implications of using
// CheckedNumeric throughout PA.
DCHECK(size + (2 * kCookieSize) > size);
size += 2 * kCookieSize;
#endif
return size;
}
ALWAYS_INLINE size_t PartitionCookieSizeAdjustSubtract(size_t size) {
#if DCHECK_IS_ON()
// Remove space for cookies.
DCHECK(size >= 2 * kCookieSize);
size -= 2 * kCookieSize;
#endif
return size;
}
ALWAYS_INLINE void* PartitionCookieFreePointerAdjust(void* ptr) {
#if DCHECK_IS_ON()
// The value given to the application is actually just after the cookie.
ptr = static_cast<char*>(ptr) - kCookieSize;
#endif
return ptr;
}
ALWAYS_INLINE void PartitionCookieWriteValue(void* ptr) {
#if DCHECK_IS_ON()
unsigned char* cookie_ptr = reinterpret_cast<unsigned char*>(ptr);
for (size_t i = 0; i < kCookieSize; ++i, ++cookie_ptr)
*cookie_ptr = kCookieValue[i];
#endif
}
ALWAYS_INLINE void PartitionCookieCheckValue(void* ptr) {
#if DCHECK_IS_ON()
unsigned char* cookie_ptr = reinterpret_cast<unsigned char*>(ptr);
for (size_t i = 0; i < kCookieSize; ++i, ++cookie_ptr)
DCHECK(*cookie_ptr == kCookieValue[i]);
#endif
}
ALWAYS_INLINE char* PartitionSuperPageToMetadataArea(char* ptr) {
uintptr_t pointer_as_uint = reinterpret_cast<uintptr_t>(ptr);
DCHECK(!(pointer_as_uint & kSuperPageOffsetMask));
// The metadata area is exactly one system page (the guard page) into the
// super page.
return reinterpret_cast<char*>(pointer_as_uint + kSystemPageSize);
}
ALWAYS_INLINE PartitionPage* PartitionPointerToPageNoAlignmentCheck(void* ptr) {
uintptr_t pointer_as_uint = reinterpret_cast<uintptr_t>(ptr);
char* super_page_ptr =
reinterpret_cast<char*>(pointer_as_uint & kSuperPageBaseMask);
uintptr_t partition_page_index =
(pointer_as_uint & kSuperPageOffsetMask) >> kPartitionPageShift;
// Index 0 is invalid because it is the metadata and guard area and
// the last index is invalid because it is a guard page.
DCHECK(partition_page_index);
DCHECK(partition_page_index < kNumPartitionPagesPerSuperPage - 1);
PartitionPage* page = reinterpret_cast<PartitionPage*>(
PartitionSuperPageToMetadataArea(super_page_ptr) +
(partition_page_index << kPageMetadataShift));
// Partition pages in the same slot span can share the same page object.
// Adjust for that.
size_t delta = page->page_offset << kPageMetadataShift;
page =
reinterpret_cast<PartitionPage*>(reinterpret_cast<char*>(page) - delta);
return page;
}
ALWAYS_INLINE void* PartitionPageToPointer(const PartitionPage* page) {
uintptr_t pointer_as_uint = reinterpret_cast<uintptr_t>(page);
uintptr_t super_page_offset = (pointer_as_uint & kSuperPageOffsetMask);
DCHECK(super_page_offset > kSystemPageSize);
DCHECK(super_page_offset < kSystemPageSize + (kNumPartitionPagesPerSuperPage *
kPageMetadataSize));
uintptr_t partition_page_index =
(super_page_offset - kSystemPageSize) >> kPageMetadataShift;
// Index 0 is invalid because it is the metadata area and the last index is
// invalid because it is a guard page.
DCHECK(partition_page_index);
DCHECK(partition_page_index < kNumPartitionPagesPerSuperPage - 1);
uintptr_t super_page_base = (pointer_as_uint & kSuperPageBaseMask);
void* ret = reinterpret_cast<void*>(
super_page_base + (partition_page_index << kPartitionPageShift));
return ret;
}
ALWAYS_INLINE PartitionPage* PartitionPointerToPage(void* ptr) {
PartitionPage* page = PartitionPointerToPageNoAlignmentCheck(ptr);
// Checks that the pointer is a multiple of bucket size.
DCHECK(!((reinterpret_cast<uintptr_t>(ptr) -
reinterpret_cast<uintptr_t>(PartitionPageToPointer(page))) %
page->bucket->slot_size));
return page;
}
ALWAYS_INLINE bool PartitionBucketIsDirectMapped(
const PartitionBucket* bucket) {
return !bucket->num_system_pages_per_slot_span;
}
ALWAYS_INLINE size_t PartitionBucketBytes(const PartitionBucket* bucket) {
return bucket->num_system_pages_per_slot_span * kSystemPageSize;
}
ALWAYS_INLINE uint16_t PartitionBucketSlots(const PartitionBucket* bucket) {
return static_cast<uint16_t>(PartitionBucketBytes(bucket) /
bucket->slot_size);
}
ALWAYS_INLINE size_t* PartitionPageGetRawSizePtr(PartitionPage* page) {
// For single-slot buckets which span more than one partition page, we
// have some spare metadata space to store the raw allocation size. We
// can use this to report better statistics.
PartitionBucket* bucket = page->bucket;
if (bucket->slot_size <= kMaxSystemPagesPerSlotSpan * kSystemPageSize)
return nullptr;
DCHECK((bucket->slot_size % kSystemPageSize) == 0);
DCHECK(PartitionBucketIsDirectMapped(bucket) ||
PartitionBucketSlots(bucket) == 1);
page++;
return reinterpret_cast<size_t*>(&page->freelist_head);
}
ALWAYS_INLINE size_t PartitionPageGetRawSize(PartitionPage* page) {
size_t* raw_size_ptr = PartitionPageGetRawSizePtr(page);
if (UNLIKELY(raw_size_ptr != nullptr))
return *raw_size_ptr;
return 0;
}
ALWAYS_INLINE PartitionRootBase* PartitionPageToRoot(PartitionPage* page) {
PartitionSuperPageExtentEntry* extent_entry =
reinterpret_cast<PartitionSuperPageExtentEntry*>(
reinterpret_cast<uintptr_t>(page) & kSystemPageBaseMask);
return extent_entry->root;
}
ALWAYS_INLINE bool PartitionPagePointerIsValid(PartitionPage* page) {
PartitionRootBase* root = PartitionPageToRoot(page);
return root->inverted_self == ~reinterpret_cast<uintptr_t>(root);
}
ALWAYS_INLINE void* PartitionBucketAlloc(PartitionRootBase* root,
int flags,
size_t size,
PartitionBucket* bucket) {
PartitionPage* page = bucket->active_pages_head;
// Check that this page is neither full nor freed.
DCHECK(page->num_allocated_slots >= 0);
void* ret = page->freelist_head;
if (LIKELY(ret != 0)) {
// If these DCHECKs fire, you probably corrupted memory.
// TODO(palmer): See if we can afford to make this a CHECK.
DCHECK(PartitionPagePointerIsValid(page));
// All large allocations must go through the slow path to correctly
// update the size metadata.
DCHECK(PartitionPageGetRawSize(page) == 0);
PartitionFreelistEntry* new_head =
PartitionFreelistMask(static_cast<PartitionFreelistEntry*>(ret)->next);
page->freelist_head = new_head;
page->num_allocated_slots++;
} else {
ret = PartitionAllocSlowPath(root, flags, size, bucket);
// TODO(palmer): See if we can afford to make this a CHECK.
DCHECK(!ret || PartitionPagePointerIsValid(PartitionPointerToPage(ret)));
}
#if DCHECK_IS_ON()
if (!ret)
return 0;
// Fill the uninitialized pattern, and write the cookies.
page = PartitionPointerToPage(ret);
size_t slot_size = page->bucket->slot_size;
size_t raw_size = PartitionPageGetRawSize(page);
if (raw_size) {
DCHECK(raw_size == size);
slot_size = raw_size;
}
size_t no_cookie_size = PartitionCookieSizeAdjustSubtract(slot_size);
char* char_ret = static_cast<char*>(ret);
// The value given to the application is actually just after the cookie.
ret = char_ret + kCookieSize;
memset(ret, kUninitializedByte, no_cookie_size);
PartitionCookieWriteValue(char_ret);
PartitionCookieWriteValue(char_ret + kCookieSize + no_cookie_size);
#endif
return ret;
}
ALWAYS_INLINE void* PartitionAlloc(PartitionRoot* root,
size_t size,
const char* type_name) {
#if defined(MEMORY_TOOL_REPLACES_ALLOCATOR)
void* result = malloc(size);
CHECK(result);
return result;
#else
size_t requested_size = size;
size = PartitionCookieSizeAdjustAdd(size);
DCHECK(root->initialized);
size_t index = size >> kBucketShift;
DCHECK(index < root->num_buckets);
DCHECK(size == index << kBucketShift);
PartitionBucket* bucket = &root->buckets()[index];
void* result = PartitionBucketAlloc(root, 0, size, bucket);
PartitionAllocHooks::AllocationHookIfEnabled(result, requested_size,
type_name);
return result;
#endif // defined(MEMORY_TOOL_REPLACES_ALLOCATOR)
}
ALWAYS_INLINE void PartitionFreeWithPage(void* ptr, PartitionPage* page) {
// If these asserts fire, you probably corrupted memory.
#if DCHECK_IS_ON()
size_t slot_size = page->bucket->slot_size;
size_t raw_size = PartitionPageGetRawSize(page);
if (raw_size)
slot_size = raw_size;
PartitionCookieCheckValue(ptr);
PartitionCookieCheckValue(reinterpret_cast<char*>(ptr) + slot_size -
kCookieSize);
memset(ptr, kFreedByte, slot_size);
#endif
DCHECK(page->num_allocated_slots);
PartitionFreelistEntry* freelist_head = page->freelist_head;
// TODO(palmer): See if we can afford to make this a CHECK.
DCHECK(!freelist_head ||
PartitionPagePointerIsValid(PartitionPointerToPage(freelist_head)));
CHECK(ptr != freelist_head); // Catches an immediate double free.
// Look for double free one level deeper in debug.
DCHECK(!freelist_head || ptr != PartitionFreelistMask(freelist_head->next));
PartitionFreelistEntry* entry = static_cast<PartitionFreelistEntry*>(ptr);
entry->next = PartitionFreelistMask(freelist_head);
page->freelist_head = entry;
--page->num_allocated_slots;
if (UNLIKELY(page->num_allocated_slots <= 0)) {
PartitionFreeSlowPath(page);
} else {
// All single-slot allocations must go through the slow path to
// correctly update the size metadata.
DCHECK(PartitionPageGetRawSize(page) == 0);
}
}
ALWAYS_INLINE void PartitionFree(void* ptr) {
#if defined(MEMORY_TOOL_REPLACES_ALLOCATOR)
free(ptr);
#else
// TODO(palmer): Check ptr alignment before continuing. Shall we do the check
// inside PartitionCookieFreePointerAdjust?
PartitionAllocHooks::FreeHookIfEnabled(ptr);
ptr = PartitionCookieFreePointerAdjust(ptr);
PartitionPage* page = PartitionPointerToPage(ptr);
// TODO(palmer): See if we can afford to make this a CHECK.
DCHECK(PartitionPagePointerIsValid(page));
PartitionFreeWithPage(ptr, page);
#endif
}
ALWAYS_INLINE PartitionBucket* PartitionGenericSizeToBucket(
PartitionRootGeneric* root,
size_t size) {
size_t order = kBitsPerSizeT - bits::CountLeadingZeroBitsSizeT(size);
// The order index is simply the next few bits after the most significant bit.
size_t order_index = (size >> root->order_index_shifts[order]) &
(kGenericNumBucketsPerOrder - 1);
// And if the remaining bits are non-zero we must bump the bucket up.
size_t sub_order_index = size & root->order_sub_index_masks[order];
PartitionBucket* bucket =
root->bucket_lookups[(order << kGenericNumBucketsPerOrderBits) +
order_index + !!sub_order_index];
DCHECK(!bucket->slot_size || bucket->slot_size >= size);
DCHECK(!(bucket->slot_size % kGenericSmallestBucket));
return bucket;
}
ALWAYS_INLINE void* PartitionAllocGenericFlags(PartitionRootGeneric* root,
int flags,
size_t size,
const char* type_name) {
#if defined(MEMORY_TOOL_REPLACES_ALLOCATOR)
void* result = malloc(size);
CHECK(result || flags & PartitionAllocReturnNull);
return result;
#else
DCHECK(root->initialized);
size_t requested_size = size;
size = PartitionCookieSizeAdjustAdd(size);
PartitionBucket* bucket = PartitionGenericSizeToBucket(root, size);
void* ret = nullptr;
{
subtle::SpinLock::Guard guard(root->lock);
ret = PartitionBucketAlloc(root, flags, size, bucket);
}
PartitionAllocHooks::AllocationHookIfEnabled(ret, requested_size, type_name);
return ret;
#endif
}
ALWAYS_INLINE void* PartitionAllocGeneric(PartitionRootGeneric* root,
size_t size,
const char* type_name) {
return PartitionAllocGenericFlags(root, 0, size, type_name);
}
ALWAYS_INLINE void PartitionFreeGeneric(PartitionRootGeneric* root, void* ptr) {
#if defined(MEMORY_TOOL_REPLACES_ALLOCATOR)
free(ptr);
#else
DCHECK(root->initialized);
if (UNLIKELY(!ptr))
return;
PartitionAllocHooks::FreeHookIfEnabled(ptr);
ptr = PartitionCookieFreePointerAdjust(ptr);
PartitionPage* page = PartitionPointerToPage(ptr);
// TODO(palmer): See if we can afford to make this a CHECK.
DCHECK(PartitionPagePointerIsValid(page));
{
subtle::SpinLock::Guard guard(root->lock);
PartitionFreeWithPage(ptr, page);
}
#endif
}
ALWAYS_INLINE size_t PartitionDirectMapSize(size_t size) {
// Caller must check that the size is not above the kGenericMaxDirectMapped
// limit before calling. This also guards against integer overflow in the
// calculation here.
DCHECK(size <= kGenericMaxDirectMapped);
return (size + kSystemPageOffsetMask) & kSystemPageBaseMask;
}
ALWAYS_INLINE size_t PartitionAllocActualSize(PartitionRootGeneric* root,
size_t size) {
#if defined(MEMORY_TOOL_REPLACES_ALLOCATOR)
return size;
#else
DCHECK(root->initialized);
size = PartitionCookieSizeAdjustAdd(size);
PartitionBucket* bucket = PartitionGenericSizeToBucket(root, size);
if (LIKELY(!PartitionBucketIsDirectMapped(bucket))) {
size = bucket->slot_size;
} else if (size > kGenericMaxDirectMapped) {
// Too large to allocate => return the size unchanged.
} else {
size = PartitionDirectMapSize(size);
}
return PartitionCookieSizeAdjustSubtract(size);
#endif
}
ALWAYS_INLINE bool PartitionAllocSupportsGetSize() {
#if defined(MEMORY_TOOL_REPLACES_ALLOCATOR)
return false;
#else
return true;
#endif
}
ALWAYS_INLINE size_t PartitionAllocGetSize(void* ptr) {
// No need to lock here. Only |ptr| being freed by another thread could
// cause trouble, and the caller is responsible for that not happening.
DCHECK(PartitionAllocSupportsGetSize());
ptr = PartitionCookieFreePointerAdjust(ptr);
PartitionPage* page = PartitionPointerToPage(ptr);
// TODO(palmer): See if we can afford to make this a CHECK.
DCHECK(PartitionPagePointerIsValid(page));
size_t size = page->bucket->slot_size;
return PartitionCookieSizeAdjustSubtract(size);
}
template <size_t N>
class SizeSpecificPartitionAllocator {
public:
SizeSpecificPartitionAllocator() {
memset(actual_buckets_, 0,
sizeof(PartitionBucket) * arraysize(actual_buckets_));
}
~SizeSpecificPartitionAllocator() = default;
static const size_t kMaxAllocation = N - kAllocationGranularity;
static const size_t kNumBuckets = N / kAllocationGranularity;
void init() {
PartitionAllocInit(&partition_root_, kNumBuckets, kMaxAllocation);
}
ALWAYS_INLINE PartitionRoot* root() { return &partition_root_; }
private:
PartitionRoot partition_root_;
PartitionBucket actual_buckets_[kNumBuckets];
};
class BASE_EXPORT PartitionAllocatorGeneric {
public:
PartitionAllocatorGeneric();
~PartitionAllocatorGeneric();
void init() { PartitionAllocGenericInit(&partition_root_); }
ALWAYS_INLINE PartitionRootGeneric* root() { return &partition_root_; }
private:
PartitionRootGeneric partition_root_;
};
BASE_EXPORT PartitionPage* GetSentinelPageForTesting();
} // namespace base
#endif // BASE_ALLOCATOR_PARTITION_ALLOCATOR_PARTITION_ALLOC_H