mirror of
https://github.com/klzgrad/naiveproxy.git
synced 2024-11-24 14:26:09 +03:00
448 lines
13 KiB
C++
448 lines
13 KiB
C++
|
// Copyright (c) 2012 The Chromium Authors. All rights reserved.
|
||
|
// Use of this source code is governed by a BSD-style license that can be
|
||
|
// found in the LICENSE file.
|
||
|
|
||
|
// This is a simple application that stress-tests the crash recovery of the disk
|
||
|
// cache. The main application starts a copy of itself on a loop, checking the
|
||
|
// exit code of the child process. When the child dies in an unexpected way,
|
||
|
// the main application quits.
|
||
|
|
||
|
// The child application has two threads: one to exercise the cache in an
|
||
|
// infinite loop, and another one to asynchronously kill the process.
|
||
|
|
||
|
// A regular build should never crash.
|
||
|
// To test that the disk cache doesn't generate critical errors with regular
|
||
|
// application level crashes, edit stress_support.h.
|
||
|
|
||
|
#include <string>
|
||
|
#include <vector>
|
||
|
|
||
|
#include "base/at_exit.h"
|
||
|
#include "base/bind.h"
|
||
|
#include "base/bind_helpers.h"
|
||
|
#include "base/command_line.h"
|
||
|
#include "base/debug/debugger.h"
|
||
|
#include "base/files/file_path.h"
|
||
|
#include "base/location.h"
|
||
|
#include "base/logging.h"
|
||
|
#include "base/message_loop/message_loop.h"
|
||
|
#include "base/path_service.h"
|
||
|
#include "base/process/launch.h"
|
||
|
#include "base/process/process.h"
|
||
|
#include "base/run_loop.h"
|
||
|
#include "base/single_thread_task_runner.h"
|
||
|
#include "base/strings/string_number_conversions.h"
|
||
|
#include "base/strings/string_util.h"
|
||
|
#include "base/strings/utf_string_conversions.h"
|
||
|
#include "base/threading/platform_thread.h"
|
||
|
#include "base/threading/thread.h"
|
||
|
#include "base/threading/thread_task_runner_handle.h"
|
||
|
#include "net/base/io_buffer.h"
|
||
|
#include "net/base/net_errors.h"
|
||
|
#include "net/base/test_completion_callback.h"
|
||
|
#include "net/disk_cache/blockfile/backend_impl.h"
|
||
|
#include "net/disk_cache/blockfile/stress_support.h"
|
||
|
#include "net/disk_cache/blockfile/trace.h"
|
||
|
#include "net/disk_cache/disk_cache.h"
|
||
|
#include "net/disk_cache/disk_cache_test_util.h"
|
||
|
|
||
|
#if defined(OS_WIN)
|
||
|
#include "base/logging_win.h"
|
||
|
#endif
|
||
|
|
||
|
using base::Time;
|
||
|
|
||
|
const int kError = -1;
|
||
|
const int kExpectedCrash = 100;
|
||
|
|
||
|
// Starts a new process.
|
||
|
int RunSlave(int iteration) {
|
||
|
base::FilePath exe;
|
||
|
PathService::Get(base::FILE_EXE, &exe);
|
||
|
|
||
|
base::CommandLine cmdline(exe);
|
||
|
cmdline.AppendArg(base::IntToString(iteration));
|
||
|
|
||
|
base::Process process = base::LaunchProcess(cmdline, base::LaunchOptions());
|
||
|
if (!process.IsValid()) {
|
||
|
printf("Unable to run test\n");
|
||
|
return kError;
|
||
|
}
|
||
|
|
||
|
int exit_code;
|
||
|
if (!process.WaitForExit(&exit_code)) {
|
||
|
printf("Unable to get return code\n");
|
||
|
return kError;
|
||
|
}
|
||
|
return exit_code;
|
||
|
}
|
||
|
|
||
|
// Main loop for the master process.
|
||
|
int MasterCode() {
|
||
|
for (int i = 0; i < 100000; i++) {
|
||
|
int ret = RunSlave(i);
|
||
|
if (kExpectedCrash != ret)
|
||
|
return ret;
|
||
|
}
|
||
|
|
||
|
printf("More than enough...\n");
|
||
|
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
// -----------------------------------------------------------------------
|
||
|
|
||
|
std::string GenerateStressKey() {
|
||
|
char key[20 * 1024];
|
||
|
size_t size = 50 + rand() % 20000;
|
||
|
CacheTestFillBuffer(key, size, true);
|
||
|
|
||
|
key[size - 1] = '\0';
|
||
|
return std::string(key);
|
||
|
}
|
||
|
|
||
|
// kNumKeys is meant to be enough to have about 3x or 4x iterations before
|
||
|
// the process crashes.
|
||
|
#ifdef NDEBUG
|
||
|
const int kNumKeys = 4000;
|
||
|
#else
|
||
|
const int kNumKeys = 1200;
|
||
|
#endif
|
||
|
const int kNumEntries = 30;
|
||
|
const int kBufferSize = 2000;
|
||
|
const int kReadSize = 20;
|
||
|
|
||
|
// Things that an entry can be doing.
|
||
|
enum Operation { NONE, OPEN, CREATE, READ, WRITE, DOOM };
|
||
|
|
||
|
// This class encapsulates a cache entry and the operations performed on that
|
||
|
// entry. An entry is opened or created as needed, the current content is then
|
||
|
// verified and then something is written to the entry. At that point, the
|
||
|
// |state_| becomes NONE again, waiting for another write, unless the entry is
|
||
|
// closed or deleted.
|
||
|
class EntryWrapper {
|
||
|
public:
|
||
|
EntryWrapper() : entry_(nullptr), state_(NONE) {
|
||
|
buffer_ = new net::IOBuffer(kBufferSize);
|
||
|
memset(buffer_->data(), 'k', kBufferSize);
|
||
|
}
|
||
|
|
||
|
Operation state() const { return state_; }
|
||
|
|
||
|
void DoOpen(int key);
|
||
|
|
||
|
private:
|
||
|
void OnOpenDone(int key, int result);
|
||
|
void DoRead();
|
||
|
void OnReadDone(int result);
|
||
|
void DoWrite();
|
||
|
void OnWriteDone(int size, int result);
|
||
|
void DoDelete(const std::string& key);
|
||
|
void OnDeleteDone(int result);
|
||
|
void DoIdle();
|
||
|
|
||
|
disk_cache::Entry* entry_;
|
||
|
Operation state_;
|
||
|
scoped_refptr<net::IOBuffer> buffer_;
|
||
|
};
|
||
|
|
||
|
// The data that the main thread is working on.
|
||
|
struct Data {
|
||
|
Data() : pendig_operations(0), writes(0), iteration(0), cache(nullptr) {}
|
||
|
|
||
|
int pendig_operations; // Counter of simultaneous operations.
|
||
|
int writes; // How many writes since this iteration started.
|
||
|
int iteration; // The iteration (number of crashes).
|
||
|
disk_cache::BackendImpl* cache;
|
||
|
std::string keys[kNumKeys];
|
||
|
EntryWrapper entries[kNumEntries];
|
||
|
};
|
||
|
|
||
|
Data* g_data = nullptr;
|
||
|
|
||
|
void EntryWrapper::DoOpen(int key) {
|
||
|
DCHECK_EQ(state_, NONE);
|
||
|
if (entry_)
|
||
|
return DoRead();
|
||
|
|
||
|
state_ = OPEN;
|
||
|
int rv = g_data->cache->OpenEntry(
|
||
|
g_data->keys[key], &entry_,
|
||
|
base::Bind(&EntryWrapper::OnOpenDone, base::Unretained(this), key));
|
||
|
if (rv != net::ERR_IO_PENDING)
|
||
|
OnOpenDone(key, rv);
|
||
|
}
|
||
|
|
||
|
void EntryWrapper::OnOpenDone(int key, int result) {
|
||
|
if (result == net::OK)
|
||
|
return DoRead();
|
||
|
|
||
|
CHECK_EQ(state_, OPEN);
|
||
|
state_ = CREATE;
|
||
|
result = g_data->cache->CreateEntry(
|
||
|
g_data->keys[key], &entry_,
|
||
|
base::Bind(&EntryWrapper::OnOpenDone, base::Unretained(this), key));
|
||
|
if (result != net::ERR_IO_PENDING)
|
||
|
OnOpenDone(key, result);
|
||
|
}
|
||
|
|
||
|
void EntryWrapper::DoRead() {
|
||
|
int current_size = entry_->GetDataSize(0);
|
||
|
if (!current_size)
|
||
|
return DoWrite();
|
||
|
|
||
|
state_ = READ;
|
||
|
memset(buffer_->data(), 'k', kReadSize);
|
||
|
int rv = entry_->ReadData(
|
||
|
0, 0, buffer_.get(), kReadSize,
|
||
|
base::Bind(&EntryWrapper::OnReadDone, base::Unretained(this)));
|
||
|
if (rv != net::ERR_IO_PENDING)
|
||
|
OnReadDone(rv);
|
||
|
}
|
||
|
|
||
|
void EntryWrapper::OnReadDone(int result) {
|
||
|
DCHECK_EQ(state_, READ);
|
||
|
CHECK_EQ(result, kReadSize);
|
||
|
CHECK_EQ(0, memcmp(buffer_->data(), "Write: ", 7));
|
||
|
DoWrite();
|
||
|
}
|
||
|
|
||
|
void EntryWrapper::DoWrite() {
|
||
|
bool truncate = (rand() % 2 == 0);
|
||
|
int size = kBufferSize - (rand() % 20) * kBufferSize / 20;
|
||
|
state_ = WRITE;
|
||
|
base::snprintf(buffer_->data(), kBufferSize,
|
||
|
"Write: %d iter: %d, size: %d, truncate: %d ",
|
||
|
g_data->writes, g_data->iteration, size, truncate ? 1 : 0);
|
||
|
int rv = entry_->WriteData(
|
||
|
0, 0, buffer_.get(), size,
|
||
|
base::Bind(&EntryWrapper::OnWriteDone, base::Unretained(this), size),
|
||
|
truncate);
|
||
|
if (rv != net::ERR_IO_PENDING)
|
||
|
OnWriteDone(size, rv);
|
||
|
}
|
||
|
|
||
|
void EntryWrapper::OnWriteDone(int size, int result) {
|
||
|
DCHECK_EQ(state_, WRITE);
|
||
|
CHECK_EQ(size, result);
|
||
|
if (!(g_data->writes++ % 100))
|
||
|
printf("Entries: %d \r", g_data->writes);
|
||
|
|
||
|
int random = rand() % 100;
|
||
|
std::string key = entry_->GetKey();
|
||
|
if (random > 90)
|
||
|
return DoDelete(key); // 10% delete then close.
|
||
|
|
||
|
if (random > 60) { // 20% close.
|
||
|
entry_->Close();
|
||
|
entry_ = nullptr;
|
||
|
}
|
||
|
|
||
|
if (random > 80)
|
||
|
return DoDelete(key); // 10% close then delete.
|
||
|
|
||
|
DoIdle(); // 60% do another write later.
|
||
|
}
|
||
|
|
||
|
void EntryWrapper::DoDelete(const std::string& key) {
|
||
|
state_ = DOOM;
|
||
|
int rv = g_data->cache->DoomEntry(
|
||
|
key, base::Bind(&EntryWrapper::OnDeleteDone, base::Unretained(this)));
|
||
|
if (rv != net::ERR_IO_PENDING)
|
||
|
OnDeleteDone(rv);
|
||
|
}
|
||
|
|
||
|
void EntryWrapper::OnDeleteDone(int result) {
|
||
|
DCHECK_EQ(state_, DOOM);
|
||
|
if (entry_) {
|
||
|
entry_->Close();
|
||
|
entry_ = nullptr;
|
||
|
}
|
||
|
DoIdle();
|
||
|
}
|
||
|
|
||
|
void LoopTask();
|
||
|
|
||
|
void EntryWrapper::DoIdle() {
|
||
|
state_ = NONE;
|
||
|
g_data->pendig_operations--;
|
||
|
DCHECK(g_data->pendig_operations);
|
||
|
base::ThreadTaskRunnerHandle::Get()->PostTask(FROM_HERE,
|
||
|
base::Bind(&LoopTask));
|
||
|
}
|
||
|
|
||
|
// The task that keeps the main thread busy. Whenever an entry becomes idle this
|
||
|
// task is executed again.
|
||
|
void LoopTask() {
|
||
|
if (g_data->pendig_operations >= kNumEntries)
|
||
|
return;
|
||
|
|
||
|
int slot = rand() % kNumEntries;
|
||
|
if (g_data->entries[slot].state() == NONE) {
|
||
|
// Each slot will have some keys assigned to it so that the same entry will
|
||
|
// not be open by two slots, which means that the state is well known at
|
||
|
// all times.
|
||
|
int keys_per_entry = kNumKeys / kNumEntries;
|
||
|
int key = rand() % keys_per_entry + keys_per_entry * slot;
|
||
|
g_data->pendig_operations++;
|
||
|
g_data->entries[slot].DoOpen(key);
|
||
|
}
|
||
|
|
||
|
base::ThreadTaskRunnerHandle::Get()->PostTask(FROM_HERE,
|
||
|
base::Bind(&LoopTask));
|
||
|
}
|
||
|
|
||
|
// This thread will loop forever, adding and removing entries from the cache.
|
||
|
// iteration is the current crash cycle, so the entries on the cache are marked
|
||
|
// to know which instance of the application wrote them.
|
||
|
void StressTheCache(int iteration) {
|
||
|
int cache_size = 0x2000000; // 32MB.
|
||
|
uint32_t mask = 0xfff; // 4096 entries.
|
||
|
|
||
|
base::FilePath path;
|
||
|
PathService::Get(base::DIR_TEMP, &path);
|
||
|
path = path.AppendASCII("cache_test_stress");
|
||
|
|
||
|
base::Thread cache_thread("CacheThread");
|
||
|
if (!cache_thread.StartWithOptions(
|
||
|
base::Thread::Options(base::MessageLoop::TYPE_IO, 0)))
|
||
|
return;
|
||
|
|
||
|
g_data = new Data();
|
||
|
g_data->iteration = iteration;
|
||
|
g_data->cache = new disk_cache::BackendImpl(
|
||
|
path, mask, cache_thread.task_runner().get(), NULL);
|
||
|
g_data->cache->SetMaxSize(cache_size);
|
||
|
g_data->cache->SetFlags(disk_cache::kNoLoadProtection);
|
||
|
|
||
|
net::TestCompletionCallback cb;
|
||
|
int rv = g_data->cache->Init(cb.callback());
|
||
|
|
||
|
if (cb.GetResult(rv) != net::OK) {
|
||
|
printf("Unable to initialize cache.\n");
|
||
|
return;
|
||
|
}
|
||
|
printf("Iteration %d, initial entries: %d\n", iteration,
|
||
|
g_data->cache->GetEntryCount());
|
||
|
|
||
|
int seed = static_cast<int>(Time::Now().ToInternalValue());
|
||
|
srand(seed);
|
||
|
|
||
|
for (int i = 0; i < kNumKeys; i++)
|
||
|
g_data->keys[i] = GenerateStressKey();
|
||
|
|
||
|
base::ThreadTaskRunnerHandle::Get()->PostTask(FROM_HERE,
|
||
|
base::Bind(&LoopTask));
|
||
|
base::RunLoop().Run();
|
||
|
}
|
||
|
|
||
|
// We want to prevent the timer thread from killing the process while we are
|
||
|
// waiting for the debugger to attach.
|
||
|
bool g_crashing = false;
|
||
|
|
||
|
// RunSoon() and CrashCallback() reference each other, unfortunately.
|
||
|
void RunSoon(scoped_refptr<base::SingleThreadTaskRunner> task_runner);
|
||
|
|
||
|
void CrashCallback() {
|
||
|
// Keep trying to run.
|
||
|
RunSoon(base::ThreadTaskRunnerHandle::Get());
|
||
|
|
||
|
if (g_crashing)
|
||
|
return;
|
||
|
|
||
|
if (rand() % 100 > 30) {
|
||
|
printf("sweet death...\n");
|
||
|
#if defined(OS_WIN)
|
||
|
// Windows does more work on _exit() than we would like.
|
||
|
base::Process::Current().Terminate(kExpectedCrash, false);
|
||
|
#elif defined(OS_POSIX)
|
||
|
// On POSIX, _exit() will terminate the process with minimal cleanup,
|
||
|
// and it is cleaner than killing.
|
||
|
_exit(kExpectedCrash);
|
||
|
#endif
|
||
|
}
|
||
|
}
|
||
|
|
||
|
void RunSoon(scoped_refptr<base::SingleThreadTaskRunner> task_runner) {
|
||
|
const base::TimeDelta kTaskDelay = base::TimeDelta::FromSeconds(10);
|
||
|
task_runner->PostDelayedTask(FROM_HERE, base::Bind(&CrashCallback),
|
||
|
kTaskDelay);
|
||
|
}
|
||
|
|
||
|
// We leak everything here :)
|
||
|
bool StartCrashThread() {
|
||
|
base::Thread* thread = new base::Thread("party_crasher");
|
||
|
if (!thread->Start())
|
||
|
return false;
|
||
|
|
||
|
RunSoon(thread->task_runner());
|
||
|
return true;
|
||
|
}
|
||
|
|
||
|
void CrashHandler(const char* file,
|
||
|
int line,
|
||
|
const base::StringPiece str,
|
||
|
const base::StringPiece stack_trace) {
|
||
|
g_crashing = true;
|
||
|
base::debug::BreakDebugger();
|
||
|
}
|
||
|
|
||
|
bool MessageHandler(int severity, const char* file, int line,
|
||
|
size_t message_start, const std::string& str) {
|
||
|
const size_t kMaxMessageLen = 48;
|
||
|
char message[kMaxMessageLen];
|
||
|
size_t len = std::min(str.length() - message_start, kMaxMessageLen - 1);
|
||
|
|
||
|
memcpy(message, str.c_str() + message_start, len);
|
||
|
message[len] = '\0';
|
||
|
#if !defined(DISK_CACHE_TRACE_TO_LOG)
|
||
|
disk_cache::Trace("%s", message);
|
||
|
#endif
|
||
|
return false;
|
||
|
}
|
||
|
|
||
|
// -----------------------------------------------------------------------
|
||
|
|
||
|
#if defined(OS_WIN)
|
||
|
// {B9A153D4-31C3-48e4-9ABF-D54383F14A0D}
|
||
|
const GUID kStressCacheTraceProviderName = {
|
||
|
0xb9a153d4, 0x31c3, 0x48e4,
|
||
|
{ 0x9a, 0xbf, 0xd5, 0x43, 0x83, 0xf1, 0x4a, 0xd } };
|
||
|
#endif
|
||
|
|
||
|
int main(int argc, const char* argv[]) {
|
||
|
// Setup an AtExitManager so Singleton objects will be destructed.
|
||
|
base::AtExitManager at_exit_manager;
|
||
|
|
||
|
if (argc < 2)
|
||
|
return MasterCode();
|
||
|
|
||
|
logging::ScopedLogAssertHandler scoped_assert_handler(
|
||
|
base::Bind(CrashHandler));
|
||
|
logging::SetLogMessageHandler(MessageHandler);
|
||
|
|
||
|
#if defined(OS_WIN)
|
||
|
logging::LogEventProvider::Initialize(kStressCacheTraceProviderName);
|
||
|
#else
|
||
|
base::CommandLine::Init(argc, argv);
|
||
|
logging::LoggingSettings settings;
|
||
|
settings.logging_dest = logging::LOG_TO_SYSTEM_DEBUG_LOG;
|
||
|
logging::InitLogging(settings);
|
||
|
#endif
|
||
|
|
||
|
// Some time for the memory manager to flush stuff.
|
||
|
base::PlatformThread::Sleep(base::TimeDelta::FromSeconds(3));
|
||
|
base::MessageLoopForIO message_loop;
|
||
|
|
||
|
char* end;
|
||
|
long int iteration = strtol(argv[1], &end, 0);
|
||
|
|
||
|
if (!StartCrashThread()) {
|
||
|
printf("failed to start thread\n");
|
||
|
return kError;
|
||
|
}
|
||
|
|
||
|
StressTheCache(iteration);
|
||
|
return 0;
|
||
|
}
|