naiveproxy/src/base/containers/buffer_iterator.h

243 lines
9.3 KiB
C
Raw Normal View History

2024-05-12 20:52:12 +08:00
// Copyright 2019 The Chromium Authors
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#ifndef BASE_CONTAINERS_BUFFER_ITERATOR_H_
#define BASE_CONTAINERS_BUFFER_ITERATOR_H_
#include <string.h>
#include <concepts>
#include <optional>
#include "base/compiler_specific.h"
#include "base/containers/span.h"
#include "base/numerics/checked_math.h"
namespace base {
// BufferIterator is a bounds-checked container utility to access variable-
// length, heterogeneous structures contained within a buffer. If the data are
// homogeneous, use base::span<> instead.
//
// After being created with a weakly-owned buffer, BufferIterator returns
// pointers to structured data within the buffer. After each method call that
// returns data in the buffer, the iterator position is advanced by the byte
// size of the object (or span of objects) returned. If there are not enough
// bytes remaining in the buffer to return the requested object(s), a nullptr
// or empty span is returned.
//
// This class is similar to base::Pickle, which should be preferred for
// serializing to disk. Pickle versions its header and does not support writing
// structures, which are problematic for serialization due to struct padding and
// version shear concerns.
//
// Example usage:
//
// std::vector<uint8_t> buffer(4096);
// if (!ReadSomeData(&buffer, buffer.size())) {
// LOG(ERROR) << "Failed to read data.";
// return false;
// }
//
// BufferIterator<uint8_t> iterator(buffer);
// uint32_t* num_items = iterator.Object<uint32_t>();
// if (!num_items) {
// LOG(ERROR) << "No num_items field."
// return false;
// }
//
// base::span<const item_struct> items =
// iterator.Span<item_struct>(*num_items);
// if (items.size() != *num_items) {
// LOG(ERROR) << "Not enough items.";
// return false;
// }
//
// // ... validate the objects in |items|.
template <typename B>
class BufferIterator {
public:
static_assert(std::same_as<std::remove_const_t<B>, char> ||
std::same_as<std::remove_const_t<B>, unsigned char>,
"Underlying buffer type must be char-type.");
// Constructs an empty BufferIterator that will always return null pointers.
BufferIterator() {}
// Constructs a BufferIterator over the `buffer` span, that will return
// pointers into the span.
explicit BufferIterator(span<B> buffer)
: buffer_(buffer), remaining_(buffer) {}
// TODO(crbug.com/40284755): Move all callers to use spans and remove this.
UNSAFE_BUFFER_USAGE BufferIterator(B* data, size_t size)
: BufferIterator(
// TODO(crbug.com/40284755): Remove this constructor entirely,
// callers should provide a span. There's no way to know that the
// size is correct here.
UNSAFE_BUFFERS(span(data, size))) {}
// Copies out an object. As compared to using `Object`, this avoids potential
// unaligned access which may be undefined behavior.
template <typename T,
typename = std::enable_if_t<std::is_trivially_copyable_v<T>>>
std::optional<T> CopyObject() {
std::optional<T> t;
if (remaining_.size() >= sizeof(T)) {
auto [source, remain] = remaining_.template split_at<sizeof(T)>();
byte_span_from_ref(t.emplace()).copy_from(as_bytes(source));
remaining_ = remain;
}
return t;
}
// Returns a const pointer to an object of type T in the buffer at the current
// position.
//
// # Safety
// Note that the buffer's current position must be aligned for the type T
// or using the pointer will cause Undefined Behaviour. Generally prefer
// `CopyObject` as it avoids this problem entirely.
// TODO(danakj): We should probably CHECK this instead of allowing UB into
// production.
template <typename T,
typename = std::enable_if_t<std::is_trivially_copyable_v<T>>>
const T* Object() {
return MutableObject<const T>();
}
// Returns a pointer to a mutable structure T in the buffer at the current
// position. On success, the iterator position is advanced by sizeof(T). If
// there are not sizeof(T) bytes remaining in the buffer, returns nullptr.
//
// # Safety
// Note that the buffer's current position must be aligned for the type T or
// using the pointer will cause Undefined Behaviour. Generally prefer
// `CopyObject` as it avoids this problem entirely.
// TODO(danakj): We should probably CHECK this instead of allowing UB into
// production.
template <typename T,
typename = std::enable_if_t<std::is_trivially_copyable_v<T>>>
T* MutableObject() {
T* t = nullptr;
if (remaining_.size() >= sizeof(T)) {
auto [source, remain] = remaining_.template split_at<sizeof(T)>();
// TODO(danakj): This is UB without creating a lifetime for the object in
// the compiler, which we can not do before C++23:
// https://en.cppreference.com/w/cpp/memory/start_lifetime_as
t = reinterpret_cast<T*>(source.data());
remaining_ = remain;
}
return t;
}
// Returns a span of |count| T objects in the buffer at the current position.
// On success, the iterator position is advanced by |sizeof(T) * count|. If
// there are not enough bytes remaining in the buffer to fulfill the request,
// returns an empty span.
//
// # Safety
// Note that the buffer's current position must be aligned for the type T or
// using the span will cause Undefined Behaviour.
// TODO(danakj): We should probably CHECK this instead of allowing UB into
// production.
template <typename T,
typename = std::enable_if_t<std::is_trivially_copyable_v<T>>>
span<T> MutableSpan(size_t count) {
size_t byte_size;
if (!CheckMul(sizeof(T), count).AssignIfValid(&byte_size)) {
return span<T>();
}
if (byte_size > remaining_.size()) {
return span<T>();
}
auto [lhs, rhs] = remaining_.split_at(byte_size);
remaining_ = rhs;
// SAFETY: The byte size of `span<T>` with size `count` is `count *
// sizeof(T)` which is exactly `byte_size`, the byte size of `lhs`.
//
// TODO(danakj): This is UB without creating a lifetime for the object in
// the compiler, which we can not do before C++23:
// https://en.cppreference.com/w/cpp/memory/start_lifetime_as
return UNSAFE_BUFFERS(span<T>(reinterpret_cast<T*>(lhs.data()), count));
}
// An overload for when the size is known at compile time. The result will be
// a fixed-size span.
template <typename T,
size_t N,
typename = std::enable_if_t<std::is_trivially_copyable_v<T>>>
requires(N <= std::numeric_limits<size_t>::max() / sizeof(T))
std::optional<span<T, N>> MutableSpan() {
constexpr size_t byte_size =
N * sizeof(T); // Overflow is checked by `requires`.
if (byte_size > remaining_.size()) {
return std::nullopt;
}
auto [lhs, rhs] = remaining_.split_at(byte_size);
remaining_ = rhs;
// SAFETY: The byte size of `span<T>` with size `count` is `count *
// sizeof(T)` which is exactly `byte_size`, the byte size of `lhs`.
//
// TODO(danakj): This is UB without creating a lifetime for the object in
// the compiler, which we can not do before C++23:
// https://en.cppreference.com/w/cpp/memory/start_lifetime_as
return UNSAFE_BUFFERS(span<T, N>(reinterpret_cast<T*>(lhs.data()), N));
}
// Returns a span to |count| const objects of type T in the buffer at the
// current position.
//
// # Safety
// Note that the buffer's current position must be aligned for the type T or
// using the span will cause Undefined Behaviour.
// TODO(danakj): We should probably CHECK this instead of allowing UB into
// production.
template <typename T,
typename = std::enable_if_t<std::is_trivially_copyable_v<T>>>
span<const T> Span(size_t count) {
return MutableSpan<const T>(count);
}
// An overload for when the size is known at compile time. The result will be
// a fixed-size span.
template <typename T,
size_t N,
typename = std::enable_if_t<std::is_trivially_copyable_v<T>>>
requires(N <= std::numeric_limits<size_t>::max() / sizeof(T))
std::optional<span<const T, N>> Span() {
return MutableSpan<const T, N>();
}
// Resets the iterator position to the absolute offset |to|.
void Seek(size_t to) { remaining_ = buffer_.subspan(to); }
// Limits the remaining data to the specified size.
// Seeking to an absolute offset reverses this.
void TruncateTo(size_t size) { remaining_ = remaining_.first(size); }
// Returns the total size of the underlying buffer.
size_t total_size() const { return buffer_.size(); }
// Returns the current position in the buffer.
size_t position() const {
// SAFETY: `remaining_` is a subspan always constructed from `buffer_` (or
// from itself) so its `data()` pointer is always inside `buffer_`. This
// means the subtraction is well-defined and the result is always
// non-negative.
return static_cast<size_t>(
UNSAFE_BUFFERS(remaining_.data() - buffer_.data()));
}
private:
// The original buffer that the iterator was constructed with.
const span<B> buffer_;
// A subspan of `buffer_` containing the remaining bytes to iterate over.
span<B> remaining_;
// Copy and assign allowed.
};
} // namespace base
#endif // BASE_CONTAINERS_BUFFER_ITERATOR_H_