mirror of
https://github.com/klzgrad/naiveproxy.git
synced 2024-11-28 08:16:09 +03:00
189 lines
5.9 KiB
Python
189 lines
5.9 KiB
Python
|
#!/usr/bin/env python2.7
|
||
|
|
||
|
import argparse
|
||
|
import json
|
||
|
import uuid
|
||
|
import httplib2
|
||
|
|
||
|
from apiclient import discovery
|
||
|
from apiclient.errors import HttpError
|
||
|
from oauth2client.client import GoogleCredentials
|
||
|
|
||
|
# 30 days in milliseconds
|
||
|
_EXPIRATION_MS = 30 * 24 * 60 * 60 * 1000
|
||
|
NUM_RETRIES = 3
|
||
|
|
||
|
|
||
|
def create_big_query():
|
||
|
"""Authenticates with cloud platform and gets a BiqQuery service object
|
||
|
"""
|
||
|
creds = GoogleCredentials.get_application_default()
|
||
|
return discovery.build(
|
||
|
'bigquery', 'v2', credentials=creds, cache_discovery=False)
|
||
|
|
||
|
|
||
|
def create_dataset(biq_query, project_id, dataset_id):
|
||
|
is_success = True
|
||
|
body = {
|
||
|
'datasetReference': {
|
||
|
'projectId': project_id,
|
||
|
'datasetId': dataset_id
|
||
|
}
|
||
|
}
|
||
|
|
||
|
try:
|
||
|
dataset_req = biq_query.datasets().insert(
|
||
|
projectId=project_id, body=body)
|
||
|
dataset_req.execute(num_retries=NUM_RETRIES)
|
||
|
except HttpError as http_error:
|
||
|
if http_error.resp.status == 409:
|
||
|
print 'Warning: The dataset %s already exists' % dataset_id
|
||
|
else:
|
||
|
# Note: For more debugging info, print "http_error.content"
|
||
|
print 'Error in creating dataset: %s. Err: %s' % (dataset_id,
|
||
|
http_error)
|
||
|
is_success = False
|
||
|
return is_success
|
||
|
|
||
|
|
||
|
def create_table(big_query, project_id, dataset_id, table_id, table_schema,
|
||
|
description):
|
||
|
fields = [{
|
||
|
'name': field_name,
|
||
|
'type': field_type,
|
||
|
'description': field_description
|
||
|
} for (field_name, field_type, field_description) in table_schema]
|
||
|
return create_table2(big_query, project_id, dataset_id, table_id, fields,
|
||
|
description)
|
||
|
|
||
|
|
||
|
def create_partitioned_table(big_query,
|
||
|
project_id,
|
||
|
dataset_id,
|
||
|
table_id,
|
||
|
table_schema,
|
||
|
description,
|
||
|
partition_type='DAY',
|
||
|
expiration_ms=_EXPIRATION_MS):
|
||
|
"""Creates a partitioned table. By default, a date-paritioned table is created with
|
||
|
each partition lasting 30 days after it was last modified.
|
||
|
"""
|
||
|
fields = [{
|
||
|
'name': field_name,
|
||
|
'type': field_type,
|
||
|
'description': field_description
|
||
|
} for (field_name, field_type, field_description) in table_schema]
|
||
|
return create_table2(big_query, project_id, dataset_id, table_id, fields,
|
||
|
description, partition_type, expiration_ms)
|
||
|
|
||
|
|
||
|
def create_table2(big_query,
|
||
|
project_id,
|
||
|
dataset_id,
|
||
|
table_id,
|
||
|
fields_schema,
|
||
|
description,
|
||
|
partition_type=None,
|
||
|
expiration_ms=None):
|
||
|
is_success = True
|
||
|
|
||
|
body = {
|
||
|
'description': description,
|
||
|
'schema': {
|
||
|
'fields': fields_schema
|
||
|
},
|
||
|
'tableReference': {
|
||
|
'datasetId': dataset_id,
|
||
|
'projectId': project_id,
|
||
|
'tableId': table_id
|
||
|
}
|
||
|
}
|
||
|
|
||
|
if partition_type and expiration_ms:
|
||
|
body["timePartitioning"] = {
|
||
|
"type": partition_type,
|
||
|
"expirationMs": expiration_ms
|
||
|
}
|
||
|
|
||
|
try:
|
||
|
table_req = big_query.tables().insert(
|
||
|
projectId=project_id, datasetId=dataset_id, body=body)
|
||
|
res = table_req.execute(num_retries=NUM_RETRIES)
|
||
|
print 'Successfully created %s "%s"' % (res['kind'], res['id'])
|
||
|
except HttpError as http_error:
|
||
|
if http_error.resp.status == 409:
|
||
|
print 'Warning: Table %s already exists' % table_id
|
||
|
else:
|
||
|
print 'Error in creating table: %s. Err: %s' % (table_id,
|
||
|
http_error)
|
||
|
is_success = False
|
||
|
return is_success
|
||
|
|
||
|
|
||
|
def patch_table(big_query, project_id, dataset_id, table_id, fields_schema):
|
||
|
is_success = True
|
||
|
|
||
|
body = {
|
||
|
'schema': {
|
||
|
'fields': fields_schema
|
||
|
},
|
||
|
'tableReference': {
|
||
|
'datasetId': dataset_id,
|
||
|
'projectId': project_id,
|
||
|
'tableId': table_id
|
||
|
}
|
||
|
}
|
||
|
|
||
|
try:
|
||
|
table_req = big_query.tables().patch(
|
||
|
projectId=project_id,
|
||
|
datasetId=dataset_id,
|
||
|
tableId=table_id,
|
||
|
body=body)
|
||
|
res = table_req.execute(num_retries=NUM_RETRIES)
|
||
|
print 'Successfully patched %s "%s"' % (res['kind'], res['id'])
|
||
|
except HttpError as http_error:
|
||
|
print 'Error in creating table: %s. Err: %s' % (table_id, http_error)
|
||
|
is_success = False
|
||
|
return is_success
|
||
|
|
||
|
|
||
|
def insert_rows(big_query, project_id, dataset_id, table_id, rows_list):
|
||
|
is_success = True
|
||
|
body = {'rows': rows_list}
|
||
|
try:
|
||
|
insert_req = big_query.tabledata().insertAll(
|
||
|
projectId=project_id,
|
||
|
datasetId=dataset_id,
|
||
|
tableId=table_id,
|
||
|
body=body)
|
||
|
res = insert_req.execute(num_retries=NUM_RETRIES)
|
||
|
if res.get('insertErrors', None):
|
||
|
print 'Error inserting rows! Response: %s' % res
|
||
|
is_success = False
|
||
|
except HttpError as http_error:
|
||
|
print 'Error inserting rows to the table %s' % table_id
|
||
|
is_success = False
|
||
|
|
||
|
return is_success
|
||
|
|
||
|
|
||
|
def sync_query_job(big_query, project_id, query, timeout=5000):
|
||
|
query_data = {'query': query, 'timeoutMs': timeout}
|
||
|
query_job = None
|
||
|
try:
|
||
|
query_job = big_query.jobs().query(
|
||
|
projectId=project_id,
|
||
|
body=query_data).execute(num_retries=NUM_RETRIES)
|
||
|
except HttpError as http_error:
|
||
|
print 'Query execute job failed with error: %s' % http_error
|
||
|
print http_error.content
|
||
|
return query_job
|
||
|
|
||
|
|
||
|
# List of (column name, column type, description) tuples
|
||
|
def make_row(unique_row_id, row_values_dict):
|
||
|
"""row_values_dict is a dictionary of column name and column value.
|
||
|
"""
|
||
|
return {'insertId': unique_row_id, 'json': row_values_dict}
|