naiveproxy/net/disk_cache/simple/simple_synchronous_entry.cc

1886 lines
68 KiB
C++
Raw Permalink Normal View History

2018-08-15 01:19:20 +03:00
// Copyright (c) 2013 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "net/disk_cache/simple/simple_synchronous_entry.h"
#include <algorithm>
#include <cstring>
#include <functional>
#include <limits>
#include "base/compiler_specific.h"
#include "base/files/file_util.h"
#include "base/hash.h"
#include "base/location.h"
#include "base/metrics/field_trial_params.h"
#include "base/metrics/histogram_macros.h"
#include "base/numerics/safe_conversions.h"
#include "base/sha1.h"
#include "base/strings/string_piece.h"
#include "base/timer/elapsed_timer.h"
#include "crypto/secure_hash.h"
#include "net/base/hash_value.h"
#include "net/base/io_buffer.h"
#include "net/base/net_errors.h"
#include "net/disk_cache/cache_util.h"
#include "net/disk_cache/simple/simple_backend_version.h"
#include "net/disk_cache/simple/simple_histogram_enums.h"
#include "net/disk_cache/simple/simple_histogram_macros.h"
#include "net/disk_cache/simple/simple_util.h"
#include "third_party/zlib/zlib.h"
using base::FilePath;
using base::Time;
namespace disk_cache {
namespace {
void RecordSyncOpenResult(net::CacheType cache_type,
OpenEntryResult result,
bool had_index) {
DCHECK_LT(result, OPEN_ENTRY_MAX);
SIMPLE_CACHE_UMA(ENUMERATION,
"SyncOpenResult", cache_type, result, OPEN_ENTRY_MAX);
if (had_index) {
SIMPLE_CACHE_UMA(ENUMERATION,
"SyncOpenResult_WithIndex", cache_type,
result, OPEN_ENTRY_MAX);
} else {
SIMPLE_CACHE_UMA(ENUMERATION,
"SyncOpenResult_WithoutIndex", cache_type,
result, OPEN_ENTRY_MAX);
}
}
void RecordWriteResult(net::CacheType cache_type, SyncWriteResult result) {
SIMPLE_CACHE_UMA(ENUMERATION, "SyncWriteResult", cache_type, result,
SYNC_WRITE_RESULT_MAX);
}
void RecordCheckEOFResult(net::CacheType cache_type, CheckEOFResult result) {
SIMPLE_CACHE_UMA(ENUMERATION,
"SyncCheckEOFResult", cache_type,
result, CHECK_EOF_RESULT_MAX);
}
void RecordCloseResult(net::CacheType cache_type, CloseResult result) {
SIMPLE_CACHE_UMA(ENUMERATION,
"SyncCloseResult", cache_type, result, CLOSE_RESULT_MAX);
}
void RecordKeySHA256Result(net::CacheType cache_type, KeySHA256Result result) {
SIMPLE_CACHE_UMA(ENUMERATION, "SyncKeySHA256Result", cache_type,
static_cast<int>(result),
static_cast<int>(KeySHA256Result::MAX));
}
void RecordWhetherOpenDidPrefetch(net::CacheType cache_type, bool result) {
SIMPLE_CACHE_UMA(BOOLEAN, "SyncOpenDidPrefetch", cache_type, result);
}
bool CanOmitEmptyFile(int file_index) {
DCHECK_GE(file_index, 0);
DCHECK_LT(file_index, kSimpleEntryNormalFileCount);
return file_index == simple_util::GetFileIndexFromStreamIndex(2);
}
bool TruncatePath(const FilePath& filename_to_truncate) {
base::File file_to_truncate;
int flags = base::File::FLAG_OPEN | base::File::FLAG_READ |
base::File::FLAG_WRITE | base::File::FLAG_SHARE_DELETE;
file_to_truncate.Initialize(filename_to_truncate, flags);
if (!file_to_truncate.IsValid())
return false;
if (!file_to_truncate.SetLength(0))
return false;
return true;
}
void CalculateSHA256OfKey(const std::string& key,
net::SHA256HashValue* out_hash_value) {
std::unique_ptr<crypto::SecureHash> hash(
crypto::SecureHash::Create(crypto::SecureHash::SHA256));
hash->Update(key.data(), key.size());
hash->Finish(out_hash_value, sizeof(*out_hash_value));
}
SimpleFileTracker::SubFile SubFileForFileIndex(int file_index) {
DCHECK_GT(kSimpleEntryNormalFileCount, file_index);
return file_index == 0 ? SimpleFileTracker::SubFile::FILE_0
: SimpleFileTracker::SubFile::FILE_1;
}
int FileIndexForSubFile(SimpleFileTracker::SubFile sub_file) {
DCHECK_NE(SimpleFileTracker::SubFile::FILE_SPARSE, sub_file);
return sub_file == SimpleFileTracker::SubFile::FILE_0 ? 0 : 1;
}
} // namespace
using simple_util::GetEntryHashKey;
using simple_util::GetFilenameFromEntryFileKeyAndFileIndex;
using simple_util::GetSparseFilenameFromEntryFileKey;
using simple_util::GetHeaderSize;
using simple_util::GetDataSizeFromFileSize;
using simple_util::GetFileSizeFromDataSize;
using simple_util::GetFileIndexFromStreamIndex;
const base::Feature kSimpleCachePrefetchExperiment = {
"SimpleCachePrefetchExperiment", base::FEATURE_DISABLED_BY_DEFAULT};
const char kSimplePrefetchBytesParam[] = "Bytes";
int GetSimpleCachePrefetchSize() {
return base::GetFieldTrialParamByFeatureAsInt(kSimpleCachePrefetchExperiment,
kSimplePrefetchBytesParam, 0);
}
SimpleEntryStat::SimpleEntryStat(base::Time last_used,
base::Time last_modified,
const int32_t data_size[],
const int32_t sparse_data_size)
: last_used_(last_used),
last_modified_(last_modified),
sparse_data_size_(sparse_data_size) {
memcpy(data_size_, data_size, sizeof(data_size_));
}
// These size methods all assume the presence of the SHA256 on stream zero,
// since this version of the cache always writes it. In the read case, it may
// not be present and these methods can't be relied upon.
int SimpleEntryStat::GetOffsetInFile(size_t key_length,
int offset,
int stream_index) const {
const size_t headers_size = sizeof(SimpleFileHeader) + key_length;
const size_t additional_offset =
stream_index == 0 ? data_size_[1] + sizeof(SimpleFileEOF) : 0;
return headers_size + offset + additional_offset;
}
int SimpleEntryStat::GetEOFOffsetInFile(size_t key_length,
int stream_index) const {
size_t additional_offset;
if (stream_index != 0)
additional_offset = 0;
else
additional_offset = sizeof(net::SHA256HashValue);
return additional_offset +
GetOffsetInFile(key_length, data_size_[stream_index], stream_index);
}
int SimpleEntryStat::GetLastEOFOffsetInFile(size_t key_length,
int stream_index) const {
if (stream_index == 1)
return GetEOFOffsetInFile(key_length, 0);
return GetEOFOffsetInFile(key_length, stream_index);
}
int64_t SimpleEntryStat::GetFileSize(size_t key_length, int file_index) const {
int32_t total_data_size;
if (file_index == 0) {
total_data_size = data_size_[0] + data_size_[1] +
sizeof(net::SHA256HashValue) + sizeof(SimpleFileEOF);
} else {
total_data_size = data_size_[2];
}
return GetFileSizeFromDataSize(key_length, total_data_size);
}
SimpleStreamPrefetchData::SimpleStreamPrefetchData()
: stream_crc32(crc32(0, Z_NULL, 0)) {}
SimpleStreamPrefetchData::~SimpleStreamPrefetchData() = default;
SimpleEntryCreationResults::SimpleEntryCreationResults(
SimpleEntryStat entry_stat)
: sync_entry(NULL), entry_stat(entry_stat), result(net::OK) {}
SimpleEntryCreationResults::~SimpleEntryCreationResults() = default;
SimpleSynchronousEntry::CRCRecord::CRCRecord() : index(-1),
has_crc32(false),
data_crc32(0) {
}
SimpleSynchronousEntry::CRCRecord::CRCRecord(int index_p,
bool has_crc32_p,
uint32_t data_crc32_p)
: index(index_p), has_crc32(has_crc32_p), data_crc32(data_crc32_p) {}
SimpleSynchronousEntry::ReadRequest::ReadRequest(int index_p,
int offset_p,
int buf_len_p)
: index(index_p),
offset(offset_p),
buf_len(buf_len_p),
request_update_crc(false) {}
SimpleSynchronousEntry::WriteRequest::WriteRequest(int index_p,
int offset_p,
int buf_len_p,
uint32_t previous_crc32_p,
bool truncate_p,
bool doomed_p,
bool request_update_crc_p)
: index(index_p),
offset(offset_p),
buf_len(buf_len_p),
previous_crc32(previous_crc32_p),
truncate(truncate_p),
doomed(doomed_p),
request_update_crc(request_update_crc_p) {}
SimpleSynchronousEntry::SparseRequest::SparseRequest(int64_t sparse_offset_p,
int buf_len_p)
: sparse_offset(sparse_offset_p), buf_len(buf_len_p) {}
// static
void SimpleSynchronousEntry::OpenEntry(
net::CacheType cache_type,
const FilePath& path,
const std::string& key,
const uint64_t entry_hash,
const bool had_index,
const base::TimeTicks& time_enqueued,
SimpleFileTracker* file_tracker,
SimpleEntryCreationResults* out_results) {
base::TimeTicks start_sync_open_entry = base::TimeTicks::Now();
SIMPLE_CACHE_UMA(TIMES, "QueueLatency.OpenEntry", cache_type,
(start_sync_open_entry - time_enqueued));
SimpleSynchronousEntry* sync_entry = new SimpleSynchronousEntry(
cache_type, path, key, entry_hash, had_index, file_tracker);
out_results->result = sync_entry->InitializeForOpen(
&out_results->entry_stat, out_results->stream_prefetch_data);
if (out_results->result != net::OK) {
sync_entry->Doom();
delete sync_entry;
out_results->sync_entry = NULL;
out_results->stream_prefetch_data[0].data = nullptr;
out_results->stream_prefetch_data[1].data = nullptr;
return;
}
SIMPLE_CACHE_UMA(TIMES, "DiskOpenLatency", cache_type,
base::TimeTicks::Now() - start_sync_open_entry);
out_results->sync_entry = sync_entry;
}
// static
void SimpleSynchronousEntry::CreateEntry(
net::CacheType cache_type,
const FilePath& path,
const std::string& key,
const uint64_t entry_hash,
const bool had_index,
const base::TimeTicks& time_enqueued,
SimpleFileTracker* file_tracker,
SimpleEntryCreationResults* out_results) {
DCHECK_EQ(entry_hash, GetEntryHashKey(key));
base::TimeTicks start_sync_create_entry = base::TimeTicks::Now();
SIMPLE_CACHE_UMA(TIMES, "QueueLatency.CreateEntry", cache_type,
(start_sync_create_entry - time_enqueued));
SimpleSynchronousEntry* sync_entry = new SimpleSynchronousEntry(
cache_type, path, key, entry_hash, had_index, file_tracker);
out_results->result =
sync_entry->InitializeForCreate(&out_results->entry_stat);
if (out_results->result != net::OK) {
if (out_results->result != net::ERR_FILE_EXISTS)
sync_entry->Doom();
delete sync_entry;
out_results->sync_entry = NULL;
return;
}
out_results->sync_entry = sync_entry;
SIMPLE_CACHE_UMA(TIMES, "DiskCreateLatency", cache_type,
base::TimeTicks::Now() - start_sync_create_entry);
}
// static
int SimpleSynchronousEntry::DeleteEntryFiles(const FilePath& path,
net::CacheType cache_type,
uint64_t entry_hash) {
base::TimeTicks start = base::TimeTicks::Now();
const bool deleted_well = DeleteFilesForEntryHash(path, entry_hash);
SIMPLE_CACHE_UMA(TIMES, "DiskDoomLatency", cache_type,
base::TimeTicks::Now() - start);
return deleted_well ? net::OK : net::ERR_FAILED;
}
int SimpleSynchronousEntry::Doom() {
if (entry_file_key_.doom_generation != 0u) {
// Already doomed.
return true;
}
if (have_open_files_) {
base::TimeTicks start = base::TimeTicks::Now();
bool ok = true;
SimpleFileTracker::EntryFileKey orig_key = entry_file_key_;
file_tracker_->Doom(this, &entry_file_key_);
for (int i = 0; i < kSimpleEntryNormalFileCount; ++i) {
if (!empty_file_omitted_[i]) {
base::File::Error out_error;
FilePath old_name = path_.AppendASCII(
GetFilenameFromEntryFileKeyAndFileIndex(orig_key, i));
FilePath new_name = path_.AppendASCII(
GetFilenameFromEntryFileKeyAndFileIndex(entry_file_key_, i));
ok = base::ReplaceFile(old_name, new_name, &out_error) && ok;
}
}
if (sparse_file_open()) {
base::File::Error out_error;
FilePath old_name =
path_.AppendASCII(GetSparseFilenameFromEntryFileKey(orig_key));
FilePath new_name =
path_.AppendASCII(GetSparseFilenameFromEntryFileKey(entry_file_key_));
ok = base::ReplaceFile(old_name, new_name, &out_error) && ok;
}
SIMPLE_CACHE_UMA(TIMES, "DiskDoomLatency", cache_type_,
base::TimeTicks::Now() - start);
return ok ? net::OK : net::ERR_FAILED;
} else {
// No one has ever called Create or Open on us, so we don't have to worry
// about being accessible to other ops after doom.
return DeleteEntryFiles(path_, cache_type_, entry_file_key_.entry_hash);
}
}
// static
int SimpleSynchronousEntry::TruncateEntryFiles(const base::FilePath& path,
uint64_t entry_hash) {
const bool deleted_well = TruncateFilesForEntryHash(path, entry_hash);
return deleted_well ? net::OK : net::ERR_FAILED;
}
// static
int SimpleSynchronousEntry::DeleteEntrySetFiles(
const std::vector<uint64_t>* key_hashes,
const FilePath& path) {
const size_t did_delete_count = std::count_if(
key_hashes->begin(), key_hashes->end(),
[&path](const uint64_t& key_hash) {
return SimpleSynchronousEntry::DeleteFilesForEntryHash(path, key_hash);
});
return (did_delete_count == key_hashes->size()) ? net::OK : net::ERR_FAILED;
}
void SimpleSynchronousEntry::ReadData(const ReadRequest& in_entry_op,
SimpleEntryStat* entry_stat,
net::IOBuffer* out_buf,
ReadResult* out_result) {
DCHECK(initialized_);
DCHECK_NE(0, in_entry_op.index);
int file_index = GetFileIndexFromStreamIndex(in_entry_op.index);
SimpleFileTracker::FileHandle file =
file_tracker_->Acquire(this, SubFileForFileIndex(file_index));
out_result->crc_updated = false;
if (!file.IsOK() || (header_and_key_check_needed_[file_index] &&
!CheckHeaderAndKey(file.get(), file_index))) {
out_result->result = net::ERR_FAILED;
Doom();
return;
}
const int64_t file_offset = entry_stat->GetOffsetInFile(
key_.size(), in_entry_op.offset, in_entry_op.index);
// Zero-length reads and reads to the empty streams of omitted files should
// be handled in the SimpleEntryImpl.
DCHECK_GT(in_entry_op.buf_len, 0);
DCHECK(!empty_file_omitted_[file_index]);
int bytes_read =
file->Read(file_offset, out_buf->data(), in_entry_op.buf_len);
if (bytes_read > 0) {
entry_stat->set_last_used(Time::Now());
if (in_entry_op.request_update_crc) {
out_result->updated_crc32 = simple_util::IncrementalCrc32(
in_entry_op.previous_crc32, out_buf->data(), bytes_read);
out_result->crc_updated = true;
// Verify checksum after last read, if we've been asked to.
if (in_entry_op.request_verify_crc &&
in_entry_op.offset + bytes_read ==
entry_stat->data_size(in_entry_op.index)) {
out_result->crc_performed_verify = true;
int checksum_result =
CheckEOFRecord(file.get(), in_entry_op.index, *entry_stat,
out_result->updated_crc32);
if (checksum_result < 0) {
out_result->crc_verify_ok = false;
out_result->result = checksum_result;
return;
} else {
out_result->crc_verify_ok = true;
}
}
}
}
if (bytes_read >= 0) {
out_result->result = bytes_read;
} else {
out_result->result = net::ERR_CACHE_READ_FAILURE;
Doom();
}
}
void SimpleSynchronousEntry::WriteData(const WriteRequest& in_entry_op,
net::IOBuffer* in_buf,
SimpleEntryStat* out_entry_stat,
WriteResult* out_write_result) {
base::ElapsedTimer write_time;
DCHECK(initialized_);
DCHECK_NE(0, in_entry_op.index);
int index = in_entry_op.index;
int file_index = GetFileIndexFromStreamIndex(index);
if (header_and_key_check_needed_[file_index] &&
!empty_file_omitted_[file_index]) {
SimpleFileTracker::FileHandle file =
file_tracker_->Acquire(this, SubFileForFileIndex(file_index));
if (!file.IsOK() || !CheckHeaderAndKey(file.get(), file_index)) {
out_write_result->result = net::ERR_FAILED;
Doom();
return;
}
}
int offset = in_entry_op.offset;
int buf_len = in_entry_op.buf_len;
bool truncate = in_entry_op.truncate;
bool doomed = in_entry_op.doomed;
const int64_t file_offset = out_entry_stat->GetOffsetInFile(
key_.size(), in_entry_op.offset, in_entry_op.index);
bool extending_by_write = offset + buf_len > out_entry_stat->data_size(index);
if (empty_file_omitted_[file_index]) {
// Don't create a new file if the entry has been doomed, to avoid it being
// mixed up with a newly-created entry with the same key.
if (doomed) {
DLOG(WARNING) << "Rejecting write to lazily omitted stream "
<< in_entry_op.index << " of doomed cache entry.";
RecordWriteResult(cache_type_,
SYNC_WRITE_RESULT_LAZY_STREAM_ENTRY_DOOMED);
out_write_result->result = net::ERR_CACHE_WRITE_FAILURE;
return;
}
base::File::Error error;
if (!MaybeCreateFile(file_index, FILE_REQUIRED, &error)) {
RecordWriteResult(cache_type_, SYNC_WRITE_RESULT_LAZY_CREATE_FAILURE);
Doom();
out_write_result->result = net::ERR_CACHE_WRITE_FAILURE;
return;
}
CreateEntryResult result;
if (!InitializeCreatedFile(file_index, &result)) {
RecordWriteResult(cache_type_, SYNC_WRITE_RESULT_LAZY_INITIALIZE_FAILURE);
Doom();
out_write_result->result = net::ERR_CACHE_WRITE_FAILURE;
return;
}
}
DCHECK(!empty_file_omitted_[file_index]);
// This needs to be grabbed after the above block, since that's what may
// create the file (for stream 2/file 1).
SimpleFileTracker::FileHandle file =
file_tracker_->Acquire(this, SubFileForFileIndex(file_index));
if (!file.IsOK()) {
out_write_result->result = net::ERR_FAILED;
Doom();
return;
}
if (extending_by_write) {
// The EOF record and the eventual stream afterward need to be zeroed out.
const int64_t file_eof_offset =
out_entry_stat->GetEOFOffsetInFile(key_.size(), index);
if (!file->SetLength(file_eof_offset)) {
RecordWriteResult(cache_type_, SYNC_WRITE_RESULT_PRETRUNCATE_FAILURE);
Doom();
out_write_result->result = net::ERR_CACHE_WRITE_FAILURE;
return;
}
}
if (buf_len > 0) {
if (file->Write(file_offset, in_buf->data(), buf_len) != buf_len) {
RecordWriteResult(cache_type_, SYNC_WRITE_RESULT_WRITE_FAILURE);
Doom();
out_write_result->result = net::ERR_CACHE_WRITE_FAILURE;
return;
}
}
if (!truncate && (buf_len > 0 || !extending_by_write)) {
out_entry_stat->set_data_size(
index, std::max(out_entry_stat->data_size(index), offset + buf_len));
} else {
out_entry_stat->set_data_size(index, offset + buf_len);
int file_eof_offset =
out_entry_stat->GetLastEOFOffsetInFile(key_.size(), index);
if (!file->SetLength(file_eof_offset)) {
RecordWriteResult(cache_type_, SYNC_WRITE_RESULT_TRUNCATE_FAILURE);
Doom();
out_write_result->result = net::ERR_CACHE_WRITE_FAILURE;
return;
}
}
if (in_entry_op.request_update_crc && buf_len > 0) {
out_write_result->updated_crc32 = simple_util::IncrementalCrc32(
in_entry_op.previous_crc32, in_buf->data(), buf_len);
out_write_result->crc_updated = true;
}
SIMPLE_CACHE_UMA(TIMES, "DiskWriteLatency", cache_type_,
write_time.Elapsed());
RecordWriteResult(cache_type_, SYNC_WRITE_RESULT_SUCCESS);
base::Time modification_time = Time::Now();
out_entry_stat->set_last_used(modification_time);
out_entry_stat->set_last_modified(modification_time);
out_write_result->result = buf_len;
}
void SimpleSynchronousEntry::ReadSparseData(const SparseRequest& in_entry_op,
net::IOBuffer* out_buf,
base::Time* out_last_used,
int* out_result) {
DCHECK(initialized_);
int64_t offset = in_entry_op.sparse_offset;
int buf_len = in_entry_op.buf_len;
char* buf = out_buf->data();
int read_so_far = 0;
if (!sparse_file_open()) {
*out_result = 0;
return;
}
SimpleFileTracker::FileHandle sparse_file =
file_tracker_->Acquire(this, SimpleFileTracker::SubFile::FILE_SPARSE);
if (!sparse_file.IsOK()) {
Doom();
*out_result = net::ERR_CACHE_READ_FAILURE;
return;
}
// Find the first sparse range at or after the requested offset.
SparseRangeIterator it = sparse_ranges_.lower_bound(offset);
if (it != sparse_ranges_.begin()) {
// Hop back one range and read the one overlapping with the start.
--it;
SparseRange* found_range = &it->second;
DCHECK_EQ(it->first, found_range->offset);
if (found_range->offset + found_range->length > offset) {
DCHECK_GE(found_range->length, 0);
DCHECK_LE(found_range->length, std::numeric_limits<int32_t>::max());
DCHECK_GE(offset - found_range->offset, 0);
DCHECK_LE(offset - found_range->offset,
std::numeric_limits<int32_t>::max());
int net_offset = static_cast<int>(offset - found_range->offset);
int range_len_after_offset =
static_cast<int>(found_range->length - net_offset);
DCHECK_GE(range_len_after_offset, 0);
int len_to_read = std::min(buf_len, range_len_after_offset);
if (!ReadSparseRange(sparse_file.get(), found_range, net_offset,
len_to_read, buf)) {
Doom();
*out_result = net::ERR_CACHE_READ_FAILURE;
return;
}
read_so_far += len_to_read;
}
++it;
}
// Keep reading until the buffer is full or there is not another contiguous
// range.
while (read_so_far < buf_len &&
it != sparse_ranges_.end() &&
it->second.offset == offset + read_so_far) {
SparseRange* found_range = &it->second;
DCHECK_EQ(it->first, found_range->offset);
int range_len = base::saturated_cast<int>(found_range->length);
int len_to_read = std::min(buf_len - read_so_far, range_len);
if (!ReadSparseRange(sparse_file.get(), found_range, 0, len_to_read,
buf + read_so_far)) {
Doom();
*out_result = net::ERR_CACHE_READ_FAILURE;
return;
}
read_so_far += len_to_read;
++it;
}
*out_result = read_so_far;
}
void SimpleSynchronousEntry::WriteSparseData(const SparseRequest& in_entry_op,
net::IOBuffer* in_buf,
uint64_t max_sparse_data_size,
SimpleEntryStat* out_entry_stat,
int* out_result) {
DCHECK(initialized_);
int64_t offset = in_entry_op.sparse_offset;
int buf_len = in_entry_op.buf_len;
const char* buf = in_buf->data();
int written_so_far = 0;
int appended_so_far = 0;
if (!sparse_file_open() && !CreateSparseFile()) {
Doom();
*out_result = net::ERR_CACHE_WRITE_FAILURE;
return;
}
SimpleFileTracker::FileHandle sparse_file =
file_tracker_->Acquire(this, SimpleFileTracker::SubFile::FILE_SPARSE);
if (!sparse_file.IsOK()) {
Doom();
*out_result = net::ERR_CACHE_WRITE_FAILURE;
return;
}
uint64_t sparse_data_size = out_entry_stat->sparse_data_size();
// This is a pessimistic estimate; it assumes the entire buffer is going to
// be appended as a new range, not written over existing ranges.
if (sparse_data_size + buf_len > max_sparse_data_size) {
DVLOG(1) << "Truncating sparse data file (" << sparse_data_size << " + "
<< buf_len << " > " << max_sparse_data_size << ")";
TruncateSparseFile(sparse_file.get());
out_entry_stat->set_sparse_data_size(0);
}
SparseRangeIterator it = sparse_ranges_.lower_bound(offset);
if (it != sparse_ranges_.begin()) {
--it;
SparseRange* found_range = &it->second;
if (found_range->offset + found_range->length > offset) {
DCHECK_GE(found_range->length, 0);
DCHECK_LE(found_range->length, std::numeric_limits<int32_t>::max());
DCHECK_GE(offset - found_range->offset, 0);
DCHECK_LE(offset - found_range->offset,
std::numeric_limits<int32_t>::max());
int net_offset = static_cast<int>(offset - found_range->offset);
int range_len_after_offset =
static_cast<int>(found_range->length - net_offset);
DCHECK_GE(range_len_after_offset, 0);
int len_to_write = std::min(buf_len, range_len_after_offset);
if (!WriteSparseRange(sparse_file.get(), found_range, net_offset,
len_to_write, buf)) {
Doom();
*out_result = net::ERR_CACHE_WRITE_FAILURE;
return;
}
written_so_far += len_to_write;
}
++it;
}
while (written_so_far < buf_len &&
it != sparse_ranges_.end() &&
it->second.offset < offset + buf_len) {
SparseRange* found_range = &it->second;
if (offset + written_so_far < found_range->offset) {
int len_to_append =
static_cast<int>(found_range->offset - (offset + written_so_far));
if (!AppendSparseRange(sparse_file.get(), offset + written_so_far,
len_to_append, buf + written_so_far)) {
Doom();
*out_result = net::ERR_CACHE_WRITE_FAILURE;
return;
}
written_so_far += len_to_append;
appended_so_far += len_to_append;
}
int range_len = base::saturated_cast<int>(found_range->length);
int len_to_write = std::min(buf_len - written_so_far, range_len);
if (!WriteSparseRange(sparse_file.get(), found_range, 0, len_to_write,
buf + written_so_far)) {
Doom();
*out_result = net::ERR_CACHE_WRITE_FAILURE;
return;
}
written_so_far += len_to_write;
++it;
}
if (written_so_far < buf_len) {
int len_to_append = buf_len - written_so_far;
if (!AppendSparseRange(sparse_file.get(), offset + written_so_far,
len_to_append, buf + written_so_far)) {
Doom();
*out_result = net::ERR_CACHE_WRITE_FAILURE;
return;
}
written_so_far += len_to_append;
appended_so_far += len_to_append;
}
DCHECK_EQ(buf_len, written_so_far);
base::Time modification_time = Time::Now();
out_entry_stat->set_last_used(modification_time);
out_entry_stat->set_last_modified(modification_time);
int32_t old_sparse_data_size = out_entry_stat->sparse_data_size();
out_entry_stat->set_sparse_data_size(old_sparse_data_size + appended_so_far);
*out_result = written_so_far;
}
void SimpleSynchronousEntry::GetAvailableRange(const SparseRequest& in_entry_op,
int64_t* out_start,
int* out_result) {
DCHECK(initialized_);
int64_t offset = in_entry_op.sparse_offset;
int len = in_entry_op.buf_len;
SparseRangeIterator it = sparse_ranges_.lower_bound(offset);
int64_t start = offset;
int64_t avail_so_far = 0;
if (it != sparse_ranges_.end() && it->second.offset < offset + len)
start = it->second.offset;
if ((it == sparse_ranges_.end() || it->second.offset > offset) &&
it != sparse_ranges_.begin()) {
--it;
if (it->second.offset + it->second.length > offset) {
start = offset;
avail_so_far = (it->second.offset + it->second.length) - offset;
}
++it;
}
while (start + avail_so_far < offset + len &&
it != sparse_ranges_.end() &&
it->second.offset == start + avail_so_far) {
avail_so_far += it->second.length;
++it;
}
int64_t len_from_start = len - (start - offset);
*out_start = start;
*out_result = static_cast<int>(std::min(avail_so_far, len_from_start));
}
int SimpleSynchronousEntry::CheckEOFRecord(base::File* file,
int stream_index,
const SimpleEntryStat& entry_stat,
uint32_t expected_crc32) {
DCHECK(initialized_);
SimpleFileEOF eof_record;
int file_offset = entry_stat.GetEOFOffsetInFile(key_.size(), stream_index);
int file_index = GetFileIndexFromStreamIndex(stream_index);
int rv = GetEOFRecordData(file, base::StringPiece(), file_index, file_offset,
&eof_record);
if (rv != net::OK) {
Doom();
return rv;
}
if ((eof_record.flags & SimpleFileEOF::FLAG_HAS_CRC32) &&
eof_record.data_crc32 != expected_crc32) {
DVLOG(1) << "EOF record had bad crc.";
RecordCheckEOFResult(cache_type_, CHECK_EOF_RESULT_CRC_MISMATCH);
Doom();
return net::ERR_CACHE_CHECKSUM_MISMATCH;
}
RecordCheckEOFResult(cache_type_, CHECK_EOF_RESULT_SUCCESS);
return net::OK;
}
int SimpleSynchronousEntry::PreReadStreamPayload(
base::File* file,
base::StringPiece file_0_prefetch,
int stream_index,
int extra_size,
const SimpleEntryStat& entry_stat,
const SimpleFileEOF& eof_record,
SimpleStreamPrefetchData* out) {
DCHECK(stream_index == 0 || stream_index == 1);
int stream_size = entry_stat.data_size(stream_index);
int read_size = stream_size + extra_size;
out->data = new net::GrowableIOBuffer();
out->data->SetCapacity(read_size);
int file_offset = entry_stat.GetOffsetInFile(key_.size(), 0, stream_index);
if (!ReadFromFileOrPrefetched(file, file_0_prefetch, 0, file_offset,
read_size, out->data->data()))
return net::ERR_FAILED;
// Check the CRC32.
uint32_t expected_crc32 = simple_util::Crc32(out->data->data(), stream_size);
if ((eof_record.flags & SimpleFileEOF::FLAG_HAS_CRC32) &&
eof_record.data_crc32 != expected_crc32) {
DVLOG(1) << "EOF record had bad crc.";
RecordCheckEOFResult(cache_type_, CHECK_EOF_RESULT_CRC_MISMATCH);
return net::ERR_CACHE_CHECKSUM_MISMATCH;
}
out->stream_crc32 = expected_crc32;
RecordCheckEOFResult(cache_type_, CHECK_EOF_RESULT_SUCCESS);
return net::OK;
}
void SimpleSynchronousEntry::Close(
const SimpleEntryStat& entry_stat,
std::unique_ptr<std::vector<CRCRecord>> crc32s_to_write,
net::GrowableIOBuffer* stream_0_data) {
base::ElapsedTimer close_time;
DCHECK(stream_0_data);
for (std::vector<CRCRecord>::iterator it = crc32s_to_write->begin();
it != crc32s_to_write->end(); ++it) {
const int stream_index = it->index;
const int file_index = GetFileIndexFromStreamIndex(stream_index);
if (empty_file_omitted_[file_index])
continue;
SimpleFileTracker::FileHandle file =
file_tracker_->Acquire(this, SubFileForFileIndex(file_index));
if (!file.IsOK()) {
RecordCloseResult(cache_type_, CLOSE_RESULT_WRITE_FAILURE);
Doom();
break;
}
if (stream_index == 0) {
// Write stream 0 data.
int stream_0_offset = entry_stat.GetOffsetInFile(key_.size(), 0, 0);
if (file->Write(stream_0_offset, stream_0_data->data(),
entry_stat.data_size(0)) != entry_stat.data_size(0)) {
RecordCloseResult(cache_type_, CLOSE_RESULT_WRITE_FAILURE);
DVLOG(1) << "Could not write stream 0 data.";
Doom();
}
net::SHA256HashValue hash_value;
CalculateSHA256OfKey(key_, &hash_value);
if (file->Write(stream_0_offset + entry_stat.data_size(0),
reinterpret_cast<char*>(hash_value.data),
sizeof(hash_value)) != sizeof(hash_value)) {
RecordCloseResult(cache_type_, CLOSE_RESULT_WRITE_FAILURE);
DVLOG(1) << "Could not write stream 0 data.";
Doom();
}
// Re-compute stream 0 CRC if the data got changed (we may be here even
// if it didn't change if stream 0's position on disk got changed due to
// stream 1 write).
if (!it->has_crc32) {
it->data_crc32 =
simple_util::Crc32(stream_0_data->data(), entry_stat.data_size(0));
it->has_crc32 = true;
}
}
SimpleFileEOF eof_record;
eof_record.stream_size = entry_stat.data_size(stream_index);
eof_record.final_magic_number = kSimpleFinalMagicNumber;
eof_record.flags = 0;
if (it->has_crc32)
eof_record.flags |= SimpleFileEOF::FLAG_HAS_CRC32;
if (stream_index == 0)
eof_record.flags |= SimpleFileEOF::FLAG_HAS_KEY_SHA256;
eof_record.data_crc32 = it->data_crc32;
int eof_offset = entry_stat.GetEOFOffsetInFile(key_.size(), stream_index);
// If stream 0 changed size, the file needs to be resized, otherwise the
// next open will yield wrong stream sizes. On stream 1 and stream 2 proper
// resizing of the file is handled in SimpleSynchronousEntry::WriteData().
if (stream_index == 0 && !file->SetLength(eof_offset)) {
RecordCloseResult(cache_type_, CLOSE_RESULT_WRITE_FAILURE);
DVLOG(1) << "Could not truncate stream 0 file.";
Doom();
break;
}
if (file->Write(eof_offset, reinterpret_cast<const char*>(&eof_record),
sizeof(eof_record)) != sizeof(eof_record)) {
RecordCloseResult(cache_type_, CLOSE_RESULT_WRITE_FAILURE);
DVLOG(1) << "Could not write eof record.";
Doom();
break;
}
}
for (int i = 0; i < kSimpleEntryNormalFileCount; ++i) {
if (empty_file_omitted_[i])
continue;
if (header_and_key_check_needed_[i]) {
SimpleFileTracker::FileHandle file =
file_tracker_->Acquire(this, SubFileForFileIndex(i));
if (!file.IsOK() || !CheckHeaderAndKey(file.get(), i))
Doom();
}
CloseFile(i);
}
if (sparse_file_open()) {
CloseSparseFile();
}
SIMPLE_CACHE_UMA(TIMES, "DiskCloseLatency", cache_type_,
close_time.Elapsed());
RecordCloseResult(cache_type_, CLOSE_RESULT_SUCCESS);
have_open_files_ = false;
delete this;
}
SimpleSynchronousEntry::SimpleSynchronousEntry(net::CacheType cache_type,
const FilePath& path,
const std::string& key,
const uint64_t entry_hash,
const bool had_index,
SimpleFileTracker* file_tracker)
: cache_type_(cache_type),
path_(path),
entry_file_key_(entry_hash),
had_index_(had_index),
key_(key),
have_open_files_(false),
initialized_(false),
file_tracker_(file_tracker),
sparse_file_open_(false) {
for (int i = 0; i < kSimpleEntryNormalFileCount; ++i)
empty_file_omitted_[i] = false;
}
SimpleSynchronousEntry::~SimpleSynchronousEntry() {
DCHECK(!(have_open_files_ && initialized_));
if (have_open_files_)
CloseFiles();
}
bool SimpleSynchronousEntry::MaybeOpenFile(int file_index,
base::File::Error* out_error) {
DCHECK(out_error);
FilePath filename = GetFilenameFromFileIndex(file_index);
int flags = base::File::FLAG_OPEN | base::File::FLAG_READ |
base::File::FLAG_WRITE | base::File::FLAG_SHARE_DELETE;
std::unique_ptr<base::File> file =
std::make_unique<base::File>(filename, flags);
*out_error = file->error_details();
if (CanOmitEmptyFile(file_index) && !file->IsValid() &&
*out_error == base::File::FILE_ERROR_NOT_FOUND) {
empty_file_omitted_[file_index] = true;
return true;
}
if (file->IsValid()) {
file_tracker_->Register(this, SubFileForFileIndex(file_index),
std::move(file));
return true;
}
return false;
}
bool SimpleSynchronousEntry::MaybeCreateFile(int file_index,
FileRequired file_required,
base::File::Error* out_error) {
DCHECK(out_error);
if (CanOmitEmptyFile(file_index) && file_required == FILE_NOT_REQUIRED) {
empty_file_omitted_[file_index] = true;
return true;
}
FilePath filename = GetFilenameFromFileIndex(file_index);
int flags = base::File::FLAG_CREATE | base::File::FLAG_READ |
base::File::FLAG_WRITE | base::File::FLAG_SHARE_DELETE;
std::unique_ptr<base::File> file =
std::make_unique<base::File>(filename, flags);
// It's possible that the creation failed because someone deleted the
// directory (e.g. because someone pressed "clear cache" on Android).
// If so, we would keep failing for a while until periodic index snapshot
// re-creates the cache dir, so try to recover from it quickly here.
if (!file->IsValid() &&
file->error_details() == base::File::FILE_ERROR_NOT_FOUND &&
!base::DirectoryExists(path_)) {
if (base::CreateDirectory(path_))
file->Initialize(filename, flags);
}
*out_error = file->error_details();
if (file->IsValid()) {
file_tracker_->Register(this, SubFileForFileIndex(file_index),
std::move(file));
empty_file_omitted_[file_index] = false;
return true;
}
return false;
}
bool SimpleSynchronousEntry::OpenFiles(SimpleEntryStat* out_entry_stat) {
base::Time file_1_open_start;
for (int i = 0; i < kSimpleEntryNormalFileCount; ++i) {
base::File::Error error;
if (i == 1)
file_1_open_start = base::Time::Now();
if (!MaybeOpenFile(i, &error)) {
// TODO(morlovich): Remove one each of these triplets of histograms. We
// can calculate the third as the sum or difference of the other two.
RecordSyncOpenResult(cache_type_, OPEN_ENTRY_PLATFORM_FILE_ERROR,
had_index_);
SIMPLE_CACHE_UMA(ENUMERATION,
"SyncOpenPlatformFileError", cache_type_,
-error, -base::File::FILE_ERROR_MAX);
if (had_index_) {
SIMPLE_CACHE_UMA(ENUMERATION,
"SyncOpenPlatformFileError_WithIndex", cache_type_,
-error, -base::File::FILE_ERROR_MAX);
} else {
SIMPLE_CACHE_UMA(ENUMERATION,
"SyncOpenPlatformFileError_WithoutIndex",
cache_type_,
-error, -base::File::FILE_ERROR_MAX);
}
while (--i >= 0)
CloseFile(i);
return false;
}
}
have_open_files_ = true;
base::Time after_open_files = base::Time::Now();
base::TimeDelta entry_age = after_open_files - base::Time::UnixEpoch();
for (int i = 0; i < kSimpleEntryNormalFileCount; ++i) {
if (empty_file_omitted_[i]) {
out_entry_stat->set_data_size(i + 1, 0);
continue;
}
base::File::Info file_info;
SimpleFileTracker::FileHandle file =
file_tracker_->Acquire(this, SubFileForFileIndex(i));
bool success = file.IsOK() && file->GetInfo(&file_info);
if (!success) {
DLOG(WARNING) << "Could not get platform file info.";
continue;
}
out_entry_stat->set_last_used(file_info.last_accessed);
out_entry_stat->set_last_modified(file_info.last_modified);
base::TimeDelta stream_age =
base::Time::Now() - out_entry_stat->last_modified();
if (stream_age < entry_age)
entry_age = stream_age;
// Two things prevent from knowing the right values for |data_size|:
// 1) The key might not be known, hence its length might be unknown.
// 2) Stream 0 and stream 1 are in the same file, and the exact size for
// each will only be known when reading the EOF record for stream 0.
//
// The size for file 0 and 1 is temporarily kept in
// |data_size(1)| and |data_size(2)| respectively. Reading the key in
// InitializeForOpen yields the data size for each file. In the case of
// file hash_1, this is the total size of stream 2, and is assigned to
// data_size(2). In the case of file 0, it is the combined size of stream
// 0, stream 1 and one EOF record. The exact distribution of sizes between
// stream 1 and stream 0 is only determined after reading the EOF record
// for stream 0 in ReadAndValidateStream0AndMaybe1.
if (!base::IsValueInRangeForNumericType<int>(file_info.size)) {
RecordSyncOpenResult(cache_type_, OPEN_ENTRY_INVALID_FILE_LENGTH,
had_index_);
return false;
}
out_entry_stat->set_data_size(i + 1, static_cast<int>(file_info.size));
// In case where we do know the key, report how long it took us to open
// file 1 (for stream 2), splitting the time between different size
// categories.
if (i == 1 && !key_.empty()) {
int32_t data_size = GetDataSizeFromFileSize(
key_.size(), static_cast<int>(file_info.size));
base::TimeDelta file_1_open_elapsed =
after_open_files - file_1_open_start;
if (data_size <= 32) {
SIMPLE_CACHE_UMA(TIMES, "DiskOpenStream2TinyLatency", cache_type_,
file_1_open_elapsed);
} else {
SIMPLE_CACHE_UMA(TIMES, "DiskOpenStream2NonTinyLatency", cache_type_,
file_1_open_elapsed);
}
}
}
SIMPLE_CACHE_UMA(CUSTOM_COUNTS,
"SyncOpenEntryAge", cache_type_,
entry_age.InHours(), 1, 1000, 50);
return true;
}
bool SimpleSynchronousEntry::CreateFiles(SimpleEntryStat* out_entry_stat) {
for (int i = 0; i < kSimpleEntryNormalFileCount; ++i) {
base::File::Error error;
if (!MaybeCreateFile(i, FILE_NOT_REQUIRED, &error)) {
// TODO(morlovich): Remove one each of these triplets of histograms. We
// can calculate the third as the sum or difference of the other two.
RecordSyncCreateResult(CREATE_ENTRY_PLATFORM_FILE_ERROR, had_index_);
SIMPLE_CACHE_UMA(ENUMERATION,
"SyncCreatePlatformFileError", cache_type_,
-error, -base::File::FILE_ERROR_MAX);
if (had_index_) {
SIMPLE_CACHE_UMA(ENUMERATION,
"SyncCreatePlatformFileError_WithIndex", cache_type_,
-error, -base::File::FILE_ERROR_MAX);
} else {
SIMPLE_CACHE_UMA(ENUMERATION,
"SyncCreatePlatformFileError_WithoutIndex",
cache_type_,
-error, -base::File::FILE_ERROR_MAX);
}
while (--i >= 0)
CloseFile(i);
return false;
}
}
have_open_files_ = true;
base::Time creation_time = Time::Now();
out_entry_stat->set_last_modified(creation_time);
out_entry_stat->set_last_used(creation_time);
for (int i = 0; i < kSimpleEntryNormalFileCount; ++i)
out_entry_stat->set_data_size(i, 0);
return true;
}
void SimpleSynchronousEntry::CloseFile(int index) {
if (empty_file_omitted_[index]) {
empty_file_omitted_[index] = false;
} else {
// We want to delete files that were renamed for doom here; and we should do
// this before calling SimpleFileTracker::Close, since that would make the
// name available to other threads.
if (entry_file_key_.doom_generation != 0u) {
base::DeleteFile(
path_.AppendASCII(
GetFilenameFromEntryFileKeyAndFileIndex(entry_file_key_, index)),
false);
}
file_tracker_->Close(this, SubFileForFileIndex(index));
}
}
void SimpleSynchronousEntry::CloseFiles() {
for (int i = 0; i < kSimpleEntryNormalFileCount; ++i)
CloseFile(i);
if (sparse_file_open())
CloseSparseFile();
}
bool SimpleSynchronousEntry::CheckHeaderAndKey(base::File* file,
int file_index) {
std::vector<char> header_data(key_.empty() ? kInitialHeaderRead
: GetHeaderSize(key_.size()));
int bytes_read = file->Read(0, header_data.data(), header_data.size());
const SimpleFileHeader* header =
reinterpret_cast<const SimpleFileHeader*>(header_data.data());
if (bytes_read == -1 || static_cast<size_t>(bytes_read) < sizeof(*header)) {
RecordSyncOpenResult(cache_type_, OPEN_ENTRY_CANT_READ_HEADER, had_index_);
return false;
}
// This resize will not invalidate iterators since it does not enlarge the
// header_data.
DCHECK_LE(static_cast<size_t>(bytes_read), header_data.size());
header_data.resize(bytes_read);
if (header->initial_magic_number != kSimpleInitialMagicNumber) {
RecordSyncOpenResult(cache_type_, OPEN_ENTRY_BAD_MAGIC_NUMBER, had_index_);
return false;
}
if (header->version != kSimpleEntryVersionOnDisk) {
RecordSyncOpenResult(cache_type_, OPEN_ENTRY_BAD_VERSION, had_index_);
return false;
}
size_t expected_header_size = GetHeaderSize(header->key_length);
if (header_data.size() < expected_header_size) {
size_t old_size = header_data.size();
int bytes_to_read = expected_header_size - old_size;
// This resize will invalidate iterators, since it is enlarging header_data.
header_data.resize(expected_header_size);
int bytes_read =
file->Read(old_size, header_data.data() + old_size, bytes_to_read);
if (bytes_read != bytes_to_read) {
RecordSyncOpenResult(cache_type_, OPEN_ENTRY_CANT_READ_KEY, had_index_);
return false;
}
header = reinterpret_cast<const SimpleFileHeader*>(header_data.data());
}
char* key_data = header_data.data() + sizeof(*header);
if (base::Hash(key_data, header->key_length) != header->key_hash) {
RecordSyncOpenResult(cache_type_, OPEN_ENTRY_KEY_HASH_MISMATCH, had_index_);
return false;
}
std::string key_from_header(key_data, header->key_length);
if (key_.empty()) {
key_.swap(key_from_header);
} else {
if (key_ != key_from_header) {
RecordSyncOpenResult(cache_type_, OPEN_ENTRY_KEY_MISMATCH, had_index_);
return false;
}
}
header_and_key_check_needed_[file_index] = false;
return true;
}
int SimpleSynchronousEntry::InitializeForOpen(
SimpleEntryStat* out_entry_stat,
SimpleStreamPrefetchData stream_prefetch_data[2]) {
DCHECK(!initialized_);
if (!OpenFiles(out_entry_stat)) {
DLOG(WARNING) << "Could not open platform files for entry.";
return net::ERR_FAILED;
}
for (int i = 0; i < kSimpleEntryNormalFileCount; ++i) {
if (empty_file_omitted_[i])
continue;
if (key_.empty()) {
SimpleFileTracker::FileHandle file =
file_tracker_->Acquire(this, SubFileForFileIndex(i));
// If |key_| is empty, we were opened via the iterator interface, without
// knowing what our key is. We must therefore read the header immediately
// to discover it, so SimpleEntryImpl can make it available to
// disk_cache::Entry::GetKey().
if (!file.IsOK() || !CheckHeaderAndKey(file.get(), i))
return net::ERR_FAILED;
} else {
// If we do know which key were are looking for, we still need to
// check that the file actually has it (rather than just being a hash
// collision or some sort of file system accident), but that can be put
// off until opportune time: either the read of the footer, or when we
// start reading in the data, depending on stream # and format revision.
header_and_key_check_needed_[i] = true;
}
if (i == 0) {
// File size for stream 0 has been stored temporarily in data_size[1].
int ret_value_stream_0 = ReadAndValidateStream0AndMaybe1(
out_entry_stat->data_size(1), out_entry_stat, stream_prefetch_data);
if (ret_value_stream_0 != net::OK)
return ret_value_stream_0;
} else {
out_entry_stat->set_data_size(
2,
GetDataSizeFromFileSize(key_.size(), out_entry_stat->data_size(2)));
if (out_entry_stat->data_size(2) < 0) {
DLOG(WARNING) << "Stream 2 file is too small.";
return net::ERR_FAILED;
}
}
}
int32_t sparse_data_size = 0;
if (!OpenSparseFileIfExists(&sparse_data_size)) {
RecordSyncOpenResult(cache_type_, OPEN_ENTRY_SPARSE_OPEN_FAILED,
had_index_);
return net::ERR_FAILED;
}
out_entry_stat->set_sparse_data_size(sparse_data_size);
bool removed_stream2 = false;
const int stream2_file_index = GetFileIndexFromStreamIndex(2);
DCHECK(CanOmitEmptyFile(stream2_file_index));
if (!empty_file_omitted_[stream2_file_index] &&
out_entry_stat->data_size(2) == 0) {
DVLOG(1) << "Removing empty stream 2 file.";
CloseFile(stream2_file_index);
DeleteFileForEntryHash(path_, entry_file_key_.entry_hash,
stream2_file_index);
empty_file_omitted_[stream2_file_index] = true;
removed_stream2 = true;
}
SIMPLE_CACHE_UMA(BOOLEAN, "EntryOpenedAndStream2Removed", cache_type_,
removed_stream2);
RecordSyncOpenResult(cache_type_, OPEN_ENTRY_SUCCESS, had_index_);
initialized_ = true;
return net::OK;
}
bool SimpleSynchronousEntry::InitializeCreatedFile(
int file_index,
CreateEntryResult* out_result) {
SimpleFileTracker::FileHandle file =
file_tracker_->Acquire(this, SubFileForFileIndex(file_index));
if (!file.IsOK()) {
*out_result = CREATE_ENTRY_CANT_WRITE_HEADER;
return false;
}
SimpleFileHeader header;
header.initial_magic_number = kSimpleInitialMagicNumber;
header.version = kSimpleEntryVersionOnDisk;
header.key_length = key_.size();
header.key_hash = base::Hash(key_);
int bytes_written =
file->Write(0, reinterpret_cast<char*>(&header), sizeof(header));
if (bytes_written != sizeof(header)) {
*out_result = CREATE_ENTRY_CANT_WRITE_HEADER;
return false;
}
bytes_written = file->Write(sizeof(header), key_.data(), key_.size());
if (bytes_written != base::checked_cast<int>(key_.size())) {
*out_result = CREATE_ENTRY_CANT_WRITE_KEY;
return false;
}
return true;
}
int SimpleSynchronousEntry::InitializeForCreate(
SimpleEntryStat* out_entry_stat) {
DCHECK(!initialized_);
if (!CreateFiles(out_entry_stat)) {
DLOG(WARNING) << "Could not create platform files.";
return net::ERR_FILE_EXISTS;
}
for (int i = 0; i < kSimpleEntryNormalFileCount; ++i) {
if (empty_file_omitted_[i])
continue;
CreateEntryResult result;
if (!InitializeCreatedFile(i, &result)) {
RecordSyncCreateResult(result, had_index_);
return net::ERR_FAILED;
}
}
RecordSyncCreateResult(CREATE_ENTRY_SUCCESS, had_index_);
initialized_ = true;
return net::OK;
}
int SimpleSynchronousEntry::ReadAndValidateStream0AndMaybe1(
int file_size,
SimpleEntryStat* out_entry_stat,
SimpleStreamPrefetchData stream_prefetch_data[2]) {
SimpleFileTracker::FileHandle file =
file_tracker_->Acquire(this, SubFileForFileIndex(0));
if (!file.IsOK())
return net::ERR_FAILED;
// If the file is sufficiently small, we will prefetch everything --
// in which case |prefetch_buf| will be non-null, and we should look at it
// rather than call ::Read for the bits.
std::unique_ptr<char[]> prefetch_buf;
base::StringPiece file_0_prefetch;
if (file_size > GetSimpleCachePrefetchSize()) {
RecordWhetherOpenDidPrefetch(cache_type_, false);
} else {
RecordWhetherOpenDidPrefetch(cache_type_, true);
prefetch_buf = std::make_unique<char[]>(file_size);
if (file->Read(0, prefetch_buf.get(), file_size) != file_size)
return net::ERR_FAILED;
file_0_prefetch.set(prefetch_buf.get(), file_size);
}
// Read stream 0 footer first --- it has size/feature info required to figure
// out file 0's layout.
SimpleFileEOF stream_0_eof;
int rv = GetEOFRecordData(
file.get(), file_0_prefetch, /* file_index = */ 0,
/* file_offset = */ file_size - sizeof(SimpleFileEOF), &stream_0_eof);
if (rv != net::OK)
return rv;
int32_t stream_0_size = stream_0_eof.stream_size;
if (stream_0_size < 0 || stream_0_size > file_size)
return net::ERR_FAILED;
out_entry_stat->set_data_size(0, stream_0_size);
// Calculate size for stream 1, now we know stream 0's.
// See comments in simple_entry_format.h for background.
bool has_key_sha256 =
(stream_0_eof.flags & SimpleFileEOF::FLAG_HAS_KEY_SHA256) ==
SimpleFileEOF::FLAG_HAS_KEY_SHA256;
int extra_post_stream_0_read = 0;
if (has_key_sha256)
extra_post_stream_0_read += sizeof(net::SHA256HashValue);
int32_t stream1_size = file_size - 2 * sizeof(SimpleFileEOF) - stream_0_size -
sizeof(SimpleFileHeader) - key_.size() -
extra_post_stream_0_read;
if (stream1_size < 0 || stream1_size > file_size)
return net::ERR_FAILED;
out_entry_stat->set_data_size(1, stream1_size);
// Put stream 0 data in memory --- plus maybe the sha256(key) footer.
rv = PreReadStreamPayload(file.get(), file_0_prefetch, /* stream_index = */ 0,
extra_post_stream_0_read, *out_entry_stat,
stream_0_eof, &stream_prefetch_data[0]);
if (rv != net::OK)
return rv;
// If prefetch buffer is available, and we have sha256(key) (so we don't need
// to look at the header), extract out stream 1 info as well.
if (prefetch_buf && has_key_sha256) {
SimpleFileEOF stream_1_eof;
rv = GetEOFRecordData(
file.get(), file_0_prefetch, /* file_index = */ 0,
out_entry_stat->GetEOFOffsetInFile(key_.size(), /* stream_index = */ 1),
&stream_1_eof);
if (rv != net::OK)
return rv;
rv = PreReadStreamPayload(file.get(), file_0_prefetch,
/* stream_index = */ 1,
/* extra_size = */ 0, *out_entry_stat,
stream_1_eof, &stream_prefetch_data[1]);
if (rv != net::OK)
return rv;
}
// If present, check the key SHA256.
if (has_key_sha256) {
net::SHA256HashValue hash_value;
CalculateSHA256OfKey(key_, &hash_value);
bool matched =
std::memcmp(&hash_value,
stream_prefetch_data[0].data->data() + stream_0_size,
sizeof(hash_value)) == 0;
if (!matched) {
RecordKeySHA256Result(cache_type_, KeySHA256Result::NO_MATCH);
return net::ERR_FAILED;
}
// Elide header check if we verified sha256(key) via footer.
header_and_key_check_needed_[0] = false;
RecordKeySHA256Result(cache_type_, KeySHA256Result::MATCHED);
} else {
RecordKeySHA256Result(cache_type_, KeySHA256Result::NOT_PRESENT);
}
// Ensure the key is validated before completion.
if (!has_key_sha256 && header_and_key_check_needed_[0])
CheckHeaderAndKey(file.get(), 0);
return net::OK;
}
bool SimpleSynchronousEntry::ReadFromFileOrPrefetched(
base::File* file,
base::StringPiece file_0_prefetch,
int file_index,
int offset,
int size,
char* dest) {
if (file_0_prefetch.empty() || file_index != 0) {
return file->Read(offset, dest, size) == size;
} else {
if (offset < 0 || size < 0)
return false;
if (size == 0)
return true;
base::CheckedNumeric<size_t> start(offset);
size_t start_numeric;
if (!start.AssignIfValid(&start_numeric) ||
start_numeric >= file_0_prefetch.size())
return false;
base::CheckedNumeric<size_t> end = start + size - 1;
size_t end_numeric;
if (!end.AssignIfValid(&end_numeric) ||
end_numeric >= file_0_prefetch.size())
return false;
memcpy(dest, file_0_prefetch.data() + offset, size);
return true;
}
}
int SimpleSynchronousEntry::GetEOFRecordData(base::File* file,
base::StringPiece file_0_prefetch,
int file_index,
int file_offset,
SimpleFileEOF* eof_record) {
if (!ReadFromFileOrPrefetched(file, file_0_prefetch, file_index, file_offset,
sizeof(SimpleFileEOF),
reinterpret_cast<char*>(eof_record))) {
RecordCheckEOFResult(cache_type_, CHECK_EOF_RESULT_READ_FAILURE);
return net::ERR_CACHE_CHECKSUM_READ_FAILURE;
}
if (eof_record->final_magic_number != kSimpleFinalMagicNumber) {
RecordCheckEOFResult(cache_type_, CHECK_EOF_RESULT_MAGIC_NUMBER_MISMATCH);
DVLOG(1) << "EOF record had bad magic number.";
return net::ERR_CACHE_CHECKSUM_READ_FAILURE;
}
if (!base::IsValueInRangeForNumericType<int32_t>(eof_record->stream_size))
return net::ERR_FAILED;
SIMPLE_CACHE_UMA(BOOLEAN, "SyncCheckEOFHasCrc", cache_type_,
(eof_record->flags & SimpleFileEOF::FLAG_HAS_CRC32) ==
SimpleFileEOF::FLAG_HAS_CRC32);
return net::OK;
}
// static
bool SimpleSynchronousEntry::DeleteFileForEntryHash(const FilePath& path,
const uint64_t entry_hash,
const int file_index) {
FilePath to_delete = path.AppendASCII(GetFilenameFromEntryFileKeyAndFileIndex(
SimpleFileTracker::EntryFileKey(entry_hash), file_index));
return base::DeleteFile(to_delete, false);
}
// static
bool SimpleSynchronousEntry::DeleteFilesForEntryHash(
const FilePath& path,
const uint64_t entry_hash) {
bool result = true;
for (int i = 0; i < kSimpleEntryNormalFileCount; ++i) {
if (!DeleteFileForEntryHash(path, entry_hash, i) && !CanOmitEmptyFile(i))
result = false;
}
FilePath to_delete = path.AppendASCII(GetSparseFilenameFromEntryFileKey(
SimpleFileTracker::EntryFileKey(entry_hash)));
simple_util::SimpleCacheDeleteFile(to_delete);
return result;
}
// static
bool SimpleSynchronousEntry::TruncateFilesForEntryHash(
const FilePath& path,
const uint64_t entry_hash) {
SimpleFileTracker::EntryFileKey file_key(entry_hash);
bool result = true;
for (int i = 0; i < kSimpleEntryNormalFileCount; ++i) {
FilePath filename_to_truncate =
path.AppendASCII(GetFilenameFromEntryFileKeyAndFileIndex(file_key, i));
if (!TruncatePath(filename_to_truncate))
result = false;
}
FilePath to_delete =
path.AppendASCII(GetSparseFilenameFromEntryFileKey(file_key));
TruncatePath(to_delete);
return result;
}
void SimpleSynchronousEntry::RecordSyncCreateResult(CreateEntryResult result,
bool had_index) {
DCHECK_LT(result, CREATE_ENTRY_MAX);
SIMPLE_CACHE_UMA(ENUMERATION,
"SyncCreateResult", cache_type_, result, CREATE_ENTRY_MAX);
if (had_index) {
SIMPLE_CACHE_UMA(ENUMERATION,
"SyncCreateResult_WithIndex", cache_type_,
result, CREATE_ENTRY_MAX);
} else {
SIMPLE_CACHE_UMA(ENUMERATION,
"SyncCreateResult_WithoutIndex", cache_type_,
result, CREATE_ENTRY_MAX);
}
}
FilePath SimpleSynchronousEntry::GetFilenameFromFileIndex(
int file_index) const {
return path_.AppendASCII(
GetFilenameFromEntryFileKeyAndFileIndex(entry_file_key_, file_index));
}
base::FilePath SimpleSynchronousEntry::GetFilenameForSubfile(
SimpleFileTracker::SubFile sub_file) const {
if (sub_file == SimpleFileTracker::SubFile::FILE_SPARSE)
return path_.AppendASCII(
GetSparseFilenameFromEntryFileKey(entry_file_key_));
else
return GetFilenameFromFileIndex(FileIndexForSubFile(sub_file));
}
bool SimpleSynchronousEntry::OpenSparseFileIfExists(
int32_t* out_sparse_data_size) {
DCHECK(!sparse_file_open());
FilePath filename =
path_.AppendASCII(GetSparseFilenameFromEntryFileKey(entry_file_key_));
int flags = base::File::FLAG_OPEN | base::File::FLAG_READ |
base::File::FLAG_WRITE | base::File::FLAG_SHARE_DELETE;
std::unique_ptr<base::File> sparse_file =
std::make_unique<base::File>(filename, flags);
if (!sparse_file->IsValid())
// No file -> OK, file open error -> trouble.
return sparse_file->error_details() == base::File::FILE_ERROR_NOT_FOUND;
if (!ScanSparseFile(sparse_file.get(), out_sparse_data_size))
return false;
file_tracker_->Register(this, SimpleFileTracker::SubFile::FILE_SPARSE,
std::move(sparse_file));
sparse_file_open_ = true;
return true;
}
bool SimpleSynchronousEntry::CreateSparseFile() {
DCHECK(!sparse_file_open());
FilePath filename =
path_.AppendASCII(GetSparseFilenameFromEntryFileKey(entry_file_key_));
int flags = base::File::FLAG_CREATE | base::File::FLAG_READ |
base::File::FLAG_WRITE | base::File::FLAG_SHARE_DELETE;
std::unique_ptr<base::File> sparse_file =
std::make_unique<base::File>(filename, flags);
if (!sparse_file->IsValid())
return false;
if (!InitializeSparseFile(sparse_file.get()))
return false;
file_tracker_->Register(this, SimpleFileTracker::SubFile::FILE_SPARSE,
std::move(sparse_file));
sparse_file_open_ = true;
return true;
}
void SimpleSynchronousEntry::CloseSparseFile() {
DCHECK(sparse_file_open());
if (entry_file_key_.doom_generation != 0u)
DeleteCacheFile(
path_.AppendASCII(GetSparseFilenameFromEntryFileKey(entry_file_key_)));
file_tracker_->Close(this, SimpleFileTracker::SubFile::FILE_SPARSE);
sparse_file_open_ = false;
}
bool SimpleSynchronousEntry::TruncateSparseFile(base::File* sparse_file) {
DCHECK(sparse_file_open());
int64_t header_and_key_length = sizeof(SimpleFileHeader) + key_.size();
if (!sparse_file->SetLength(header_and_key_length)) {
DLOG(WARNING) << "Could not truncate sparse file";
return false;
}
sparse_ranges_.clear();
sparse_tail_offset_ = header_and_key_length;
return true;
}
bool SimpleSynchronousEntry::InitializeSparseFile(base::File* sparse_file) {
SimpleFileHeader header;
header.initial_magic_number = kSimpleInitialMagicNumber;
header.version = kSimpleVersion;
header.key_length = key_.size();
header.key_hash = base::Hash(key_);
int header_write_result =
sparse_file->Write(0, reinterpret_cast<char*>(&header), sizeof(header));
if (header_write_result != sizeof(header)) {
DLOG(WARNING) << "Could not write sparse file header";
return false;
}
int key_write_result =
sparse_file->Write(sizeof(header), key_.data(), key_.size());
if (key_write_result != base::checked_cast<int>(key_.size())) {
DLOG(WARNING) << "Could not write sparse file key";
return false;
}
sparse_ranges_.clear();
sparse_tail_offset_ = sizeof(header) + key_.size();
return true;
}
bool SimpleSynchronousEntry::ScanSparseFile(base::File* sparse_file,
int32_t* out_sparse_data_size) {
int64_t sparse_data_size = 0;
SimpleFileHeader header;
int header_read_result =
sparse_file->Read(0, reinterpret_cast<char*>(&header), sizeof(header));
if (header_read_result != sizeof(header)) {
DLOG(WARNING) << "Could not read header from sparse file.";
return false;
}
if (header.initial_magic_number != kSimpleInitialMagicNumber) {
DLOG(WARNING) << "Sparse file magic number did not match.";
return false;
}
if (header.version < kLastCompatSparseVersion ||
header.version > kSimpleVersion) {
DLOG(WARNING) << "Sparse file unreadable version.";
return false;
}
sparse_ranges_.clear();
int64_t range_header_offset = sizeof(header) + key_.size();
while (1) {
SimpleFileSparseRangeHeader range_header;
int range_header_read_result = sparse_file->Read(
range_header_offset, reinterpret_cast<char*>(&range_header),
sizeof(range_header));
if (range_header_read_result == 0)
break;
if (range_header_read_result != sizeof(range_header)) {
DLOG(WARNING) << "Could not read sparse range header.";
return false;
}
if (range_header.sparse_range_magic_number !=
kSimpleSparseRangeMagicNumber) {
DLOG(WARNING) << "Invalid sparse range header magic number.";
return false;
}
SparseRange range;
range.offset = range_header.offset;
range.length = range_header.length;
range.data_crc32 = range_header.data_crc32;
range.file_offset = range_header_offset + sizeof(range_header);
sparse_ranges_.insert(std::make_pair(range.offset, range));
range_header_offset += sizeof(range_header) + range.length;
DCHECK_GE(sparse_data_size + range.length, sparse_data_size);
sparse_data_size += range.length;
}
*out_sparse_data_size = static_cast<int32_t>(sparse_data_size);
sparse_tail_offset_ = range_header_offset;
return true;
}
bool SimpleSynchronousEntry::ReadSparseRange(base::File* sparse_file,
const SparseRange* range,
int offset,
int len,
char* buf) {
DCHECK(range);
DCHECK(buf);
DCHECK_LE(offset, range->length);
DCHECK_LE(offset + len, range->length);
int bytes_read = sparse_file->Read(range->file_offset + offset, buf, len);
if (bytes_read < len) {
DLOG(WARNING) << "Could not read sparse range.";
return false;
}
// If we read the whole range and we have a crc32, check it.
if (offset == 0 && len == range->length && range->data_crc32 != 0) {
if (simple_util::Crc32(buf, len) != range->data_crc32) {
DLOG(WARNING) << "Sparse range crc32 mismatch.";
return false;
}
}
// TODO(morlovich): Incremental crc32 calculation?
return true;
}
bool SimpleSynchronousEntry::WriteSparseRange(base::File* sparse_file,
SparseRange* range,
int offset,
int len,
const char* buf) {
DCHECK(range);
DCHECK(buf);
DCHECK_LE(offset, range->length);
DCHECK_LE(offset + len, range->length);
uint32_t new_crc32 = 0;
if (offset == 0 && len == range->length) {
new_crc32 = simple_util::Crc32(buf, len);
}
if (new_crc32 != range->data_crc32) {
range->data_crc32 = new_crc32;
SimpleFileSparseRangeHeader header;
header.sparse_range_magic_number = kSimpleSparseRangeMagicNumber;
header.offset = range->offset;
header.length = range->length;
header.data_crc32 = range->data_crc32;
int bytes_written =
sparse_file->Write(range->file_offset - sizeof(header),
reinterpret_cast<char*>(&header), sizeof(header));
if (bytes_written != base::checked_cast<int>(sizeof(header))) {
DLOG(WARNING) << "Could not rewrite sparse range header.";
return false;
}
}
int bytes_written = sparse_file->Write(range->file_offset + offset, buf, len);
if (bytes_written < len) {
DLOG(WARNING) << "Could not write sparse range.";
return false;
}
return true;
}
bool SimpleSynchronousEntry::AppendSparseRange(base::File* sparse_file,
int64_t offset,
int len,
const char* buf) {
DCHECK_GE(offset, 0);
DCHECK_GT(len, 0);
DCHECK(buf);
uint32_t data_crc32 = simple_util::Crc32(buf, len);
SimpleFileSparseRangeHeader header;
header.sparse_range_magic_number = kSimpleSparseRangeMagicNumber;
header.offset = offset;
header.length = len;
header.data_crc32 = data_crc32;
int bytes_written = sparse_file->Write(
sparse_tail_offset_, reinterpret_cast<char*>(&header), sizeof(header));
if (bytes_written != base::checked_cast<int>(sizeof(header))) {
DLOG(WARNING) << "Could not append sparse range header.";
return false;
}
sparse_tail_offset_ += bytes_written;
bytes_written = sparse_file->Write(sparse_tail_offset_, buf, len);
if (bytes_written < len) {
DLOG(WARNING) << "Could not append sparse range data.";
return false;
}
int64_t data_file_offset = sparse_tail_offset_;
sparse_tail_offset_ += bytes_written;
SparseRange range;
range.offset = offset;
range.length = len;
range.data_crc32 = data_crc32;
range.file_offset = data_file_offset;
sparse_ranges_.insert(std::make_pair(offset, range));
return true;
}
} // namespace disk_cache