naiveproxy/net/dns/record_rdata.cc

331 lines
9.6 KiB
C++
Raw Permalink Normal View History

2018-02-02 13:49:39 +03:00
// Copyright (c) 2013 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "net/dns/record_rdata.h"
#include <numeric>
#include "base/big_endian.h"
#include "net/dns/dns_protocol.h"
#include "net/dns/dns_response.h"
namespace net {
static const size_t kSrvRecordMinimumSize = 6;
RecordRdata::RecordRdata() = default;
SrvRecordRdata::SrvRecordRdata() : priority_(0), weight_(0), port_(0) {
}
SrvRecordRdata::~SrvRecordRdata() = default;
// static
std::unique_ptr<SrvRecordRdata> SrvRecordRdata::Create(
const base::StringPiece& data,
const DnsRecordParser& parser) {
if (data.size() < kSrvRecordMinimumSize)
return std::unique_ptr<SrvRecordRdata>();
std::unique_ptr<SrvRecordRdata> rdata(new SrvRecordRdata);
base::BigEndianReader reader(data.data(), data.size());
// 2 bytes for priority, 2 bytes for weight, 2 bytes for port.
reader.ReadU16(&rdata->priority_);
reader.ReadU16(&rdata->weight_);
reader.ReadU16(&rdata->port_);
if (!parser.ReadName(data.substr(kSrvRecordMinimumSize).begin(),
&rdata->target_))
return std::unique_ptr<SrvRecordRdata>();
return rdata;
}
uint16_t SrvRecordRdata::Type() const {
return SrvRecordRdata::kType;
}
bool SrvRecordRdata::IsEqual(const RecordRdata* other) const {
if (other->Type() != Type()) return false;
const SrvRecordRdata* srv_other = static_cast<const SrvRecordRdata*>(other);
return weight_ == srv_other->weight_ &&
port_ == srv_other->port_ &&
priority_ == srv_other->priority_ &&
target_ == srv_other->target_;
}
ARecordRdata::ARecordRdata() = default;
ARecordRdata::~ARecordRdata() = default;
// static
std::unique_ptr<ARecordRdata> ARecordRdata::Create(
const base::StringPiece& data,
const DnsRecordParser& parser) {
if (data.size() != IPAddress::kIPv4AddressSize)
return std::unique_ptr<ARecordRdata>();
std::unique_ptr<ARecordRdata> rdata(new ARecordRdata);
rdata->address_ =
IPAddress(reinterpret_cast<const uint8_t*>(data.data()), data.length());
return rdata;
}
uint16_t ARecordRdata::Type() const {
return ARecordRdata::kType;
}
bool ARecordRdata::IsEqual(const RecordRdata* other) const {
if (other->Type() != Type()) return false;
const ARecordRdata* a_other = static_cast<const ARecordRdata*>(other);
return address_ == a_other->address_;
}
AAAARecordRdata::AAAARecordRdata() = default;
AAAARecordRdata::~AAAARecordRdata() = default;
// static
std::unique_ptr<AAAARecordRdata> AAAARecordRdata::Create(
const base::StringPiece& data,
const DnsRecordParser& parser) {
if (data.size() != IPAddress::kIPv6AddressSize)
return std::unique_ptr<AAAARecordRdata>();
std::unique_ptr<AAAARecordRdata> rdata(new AAAARecordRdata);
rdata->address_ =
IPAddress(reinterpret_cast<const uint8_t*>(data.data()), data.length());
return rdata;
}
uint16_t AAAARecordRdata::Type() const {
return AAAARecordRdata::kType;
}
bool AAAARecordRdata::IsEqual(const RecordRdata* other) const {
if (other->Type() != Type()) return false;
const AAAARecordRdata* a_other = static_cast<const AAAARecordRdata*>(other);
return address_ == a_other->address_;
}
CnameRecordRdata::CnameRecordRdata() = default;
CnameRecordRdata::~CnameRecordRdata() = default;
// static
std::unique_ptr<CnameRecordRdata> CnameRecordRdata::Create(
const base::StringPiece& data,
const DnsRecordParser& parser) {
std::unique_ptr<CnameRecordRdata> rdata(new CnameRecordRdata);
if (!parser.ReadName(data.begin(), &rdata->cname_))
return std::unique_ptr<CnameRecordRdata>();
return rdata;
}
uint16_t CnameRecordRdata::Type() const {
return CnameRecordRdata::kType;
}
bool CnameRecordRdata::IsEqual(const RecordRdata* other) const {
if (other->Type() != Type()) return false;
const CnameRecordRdata* cname_other =
static_cast<const CnameRecordRdata*>(other);
return cname_ == cname_other->cname_;
}
PtrRecordRdata::PtrRecordRdata() = default;
PtrRecordRdata::~PtrRecordRdata() = default;
// static
std::unique_ptr<PtrRecordRdata> PtrRecordRdata::Create(
const base::StringPiece& data,
const DnsRecordParser& parser) {
std::unique_ptr<PtrRecordRdata> rdata(new PtrRecordRdata);
if (!parser.ReadName(data.begin(), &rdata->ptrdomain_))
return std::unique_ptr<PtrRecordRdata>();
return rdata;
}
uint16_t PtrRecordRdata::Type() const {
return PtrRecordRdata::kType;
}
bool PtrRecordRdata::IsEqual(const RecordRdata* other) const {
if (other->Type() != Type()) return false;
const PtrRecordRdata* ptr_other = static_cast<const PtrRecordRdata*>(other);
return ptrdomain_ == ptr_other->ptrdomain_;
}
TxtRecordRdata::TxtRecordRdata() = default;
TxtRecordRdata::~TxtRecordRdata() = default;
// static
std::unique_ptr<TxtRecordRdata> TxtRecordRdata::Create(
const base::StringPiece& data,
const DnsRecordParser& parser) {
std::unique_ptr<TxtRecordRdata> rdata(new TxtRecordRdata);
for (size_t i = 0; i < data.size(); ) {
uint8_t length = data[i];
if (i + length >= data.size())
return std::unique_ptr<TxtRecordRdata>();
rdata->texts_.push_back(data.substr(i + 1, length).as_string());
// Move to the next string.
i += length + 1;
}
return rdata;
}
uint16_t TxtRecordRdata::Type() const {
return TxtRecordRdata::kType;
}
bool TxtRecordRdata::IsEqual(const RecordRdata* other) const {
if (other->Type() != Type()) return false;
const TxtRecordRdata* txt_other = static_cast<const TxtRecordRdata*>(other);
return texts_ == txt_other->texts_;
}
NsecRecordRdata::NsecRecordRdata() = default;
NsecRecordRdata::~NsecRecordRdata() = default;
// static
std::unique_ptr<NsecRecordRdata> NsecRecordRdata::Create(
const base::StringPiece& data,
const DnsRecordParser& parser) {
std::unique_ptr<NsecRecordRdata> rdata(new NsecRecordRdata);
// Read the "next domain". This part for the NSEC record format is
// ignored for mDNS, since it has no semantic meaning.
unsigned next_domain_length = parser.ReadName(data.data(), NULL);
// If we did not succeed in getting the next domain or the data length
// is too short for reading the bitmap header, return.
if (next_domain_length == 0 || data.length() < next_domain_length + 2)
return std::unique_ptr<NsecRecordRdata>();
struct BitmapHeader {
uint8_t block_number; // The block number should be zero.
uint8_t length; // Bitmap length in bytes. Between 1 and 32.
};
const BitmapHeader* header = reinterpret_cast<const BitmapHeader*>(
data.data() + next_domain_length);
// The block number must be zero in mDns-specific NSEC records. The bitmap
// length must be between 1 and 32.
if (header->block_number != 0 || header->length == 0 || header->length > 32)
return std::unique_ptr<NsecRecordRdata>();
base::StringPiece bitmap_data = data.substr(next_domain_length + 2);
// Since we may only have one block, the data length must be exactly equal to
// the domain length plus bitmap size.
if (bitmap_data.length() != header->length)
return std::unique_ptr<NsecRecordRdata>();
rdata->bitmap_.insert(rdata->bitmap_.begin(),
bitmap_data.begin(),
bitmap_data.end());
return rdata;
}
uint16_t NsecRecordRdata::Type() const {
return NsecRecordRdata::kType;
}
bool NsecRecordRdata::IsEqual(const RecordRdata* other) const {
if (other->Type() != Type())
return false;
const NsecRecordRdata* nsec_other =
static_cast<const NsecRecordRdata*>(other);
return bitmap_ == nsec_other->bitmap_;
}
bool NsecRecordRdata::GetBit(unsigned i) const {
unsigned byte_num = i/8;
if (bitmap_.size() < byte_num + 1)
return false;
unsigned bit_num = 7 - i % 8;
return (bitmap_[byte_num] & (1 << bit_num)) != 0;
}
OptRecordRdata::OptRecordRdata() = default;
OptRecordRdata::~OptRecordRdata() = default;
// static
std::unique_ptr<OptRecordRdata> OptRecordRdata::Create(
const base::StringPiece& data,
const DnsRecordParser& parser) {
std::unique_ptr<OptRecordRdata> rdata(new OptRecordRdata);
rdata->buf_.assign(data.begin(), data.end());
base::BigEndianReader reader(data.data(), data.size());
while (reader.remaining() > 0) {
uint16_t opt_code, opt_data_size;
base::StringPiece opt_data;
if (!(reader.ReadU16(&opt_code) && reader.ReadU16(&opt_data_size) &&
reader.ReadPiece(&opt_data, opt_data_size))) {
return std::unique_ptr<OptRecordRdata>();
}
rdata->opts_.push_back(Opt(opt_code, opt_data));
}
return rdata;
}
uint16_t OptRecordRdata::Type() const {
return OptRecordRdata::kType;
}
bool OptRecordRdata::IsEqual(const RecordRdata* other) const {
if (other->Type() != Type())
return false;
const OptRecordRdata* opt_other = static_cast<const OptRecordRdata*>(other);
return opt_other->opts_ == opts_;
}
void OptRecordRdata::AddOpt(const Opt& opt) {
base::StringPiece opt_data = opt.data();
// Resize buffer to accommodate new OPT.
const size_t orig_rdata_size = buf_.size();
buf_.resize(orig_rdata_size + Opt::kHeaderSize + opt_data.size());
// Start writing from the end of the existing rdata.
base::BigEndianWriter writer(buf_.data() + orig_rdata_size, buf_.size());
bool success = writer.WriteU16(opt.code()) &&
writer.WriteU16(opt_data.size()) &&
writer.WriteBytes(opt_data.data(), opt_data.size());
DCHECK(success);
opts_.push_back(opt);
}
OptRecordRdata::Opt::Opt(uint16_t code, base::StringPiece data) : code_(code) {
data.CopyToString(&data_);
}
bool OptRecordRdata::Opt::operator==(const OptRecordRdata::Opt& other) const {
return code_ == other.code_ && data_ == other.data_;
}
} // namespace net