naiveproxy/base/optional.h

488 lines
12 KiB
C
Raw Permalink Normal View History

2018-01-28 19:30:36 +03:00
// Copyright 2016 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#ifndef BASE_OPTIONAL_H_
#define BASE_OPTIONAL_H_
#include <type_traits>
#include "base/logging.h"
namespace base {
// Specification:
// http://en.cppreference.com/w/cpp/utility/optional/in_place_t
struct in_place_t {};
// Specification:
// http://en.cppreference.com/w/cpp/utility/optional/nullopt_t
struct nullopt_t {
constexpr explicit nullopt_t(int) {}
};
// Specification:
// http://en.cppreference.com/w/cpp/utility/optional/in_place
constexpr in_place_t in_place = {};
// Specification:
// http://en.cppreference.com/w/cpp/utility/optional/nullopt
constexpr nullopt_t nullopt(0);
namespace internal {
template <typename T, bool = std::is_trivially_destructible<T>::value>
struct OptionalStorage {
// Initializing |empty_| here instead of using default member initializing
// to avoid errors in g++ 4.8.
constexpr OptionalStorage() : empty_('\0') {}
constexpr explicit OptionalStorage(const T& value)
: is_null_(false), value_(value) {}
constexpr explicit OptionalStorage(T&& value)
: is_null_(false), value_(std::move(value)) {}
template <class... Args>
constexpr explicit OptionalStorage(base::in_place_t, Args&&... args)
: is_null_(false), value_(std::forward<Args>(args)...) {}
// When T is not trivially destructible we must call its
// destructor before deallocating its memory.
~OptionalStorage() {
if (!is_null_)
value_.~T();
}
bool is_null_ = true;
union {
// |empty_| exists so that the union will always be initialized, even when
// it doesn't contain a value. Union members must be initialized for the
// constructor to be 'constexpr'.
char empty_;
T value_;
};
};
template <typename T>
struct OptionalStorage<T, true> {
// Initializing |empty_| here instead of using default member initializing
// to avoid errors in g++ 4.8.
constexpr OptionalStorage() : empty_('\0') {}
constexpr explicit OptionalStorage(const T& value)
: is_null_(false), value_(value) {}
constexpr explicit OptionalStorage(T&& value)
: is_null_(false), value_(std::move(value)) {}
template <class... Args>
constexpr explicit OptionalStorage(base::in_place_t, Args&&... args)
: is_null_(false), value_(std::forward<Args>(args)...) {}
// When T is trivially destructible (i.e. its destructor does nothing) there
// is no need to call it. Explicitly defaulting the destructor means it's not
// user-provided. Those two together make this destructor trivial.
~OptionalStorage() = default;
bool is_null_ = true;
union {
// |empty_| exists so that the union will always be initialized, even when
// it doesn't contain a value. Union members must be initialized for the
// constructor to be 'constexpr'.
char empty_;
T value_;
};
};
} // namespace internal
// base::Optional is a Chromium version of the C++17 optional class:
// std::optional documentation:
// http://en.cppreference.com/w/cpp/utility/optional
// Chromium documentation:
// https://chromium.googlesource.com/chromium/src/+/master/docs/optional.md
//
// These are the differences between the specification and the implementation:
// - The constructor and emplace method using initializer_list are not
// implemented because 'initializer_list' is banned from Chromium.
// - Constructors do not use 'constexpr' as it is a C++14 extension.
// - 'constexpr' might be missing in some places for reasons specified locally.
// - No exceptions are thrown, because they are banned from Chromium.
// - All the non-members are in the 'base' namespace instead of 'std'.
template <typename T>
class Optional {
public:
using value_type = T;
constexpr Optional() {}
constexpr Optional(base::nullopt_t) {}
// TODO(dcheng): Make these constexpr iff T is trivially constructible.
Optional(const Optional& other) {
if (!other.storage_.is_null_)
Init(other.value());
}
Optional(Optional&& other) {
if (!other.storage_.is_null_)
Init(std::move(other.value()));
}
constexpr Optional(const T& value) : storage_(value) {}
constexpr Optional(T&& value) : storage_(std::move(value)) {}
template <class... Args>
constexpr explicit Optional(base::in_place_t, Args&&... args)
: storage_(base::in_place, std::forward<Args>(args)...) {}
~Optional() = default;
Optional& operator=(base::nullopt_t) {
FreeIfNeeded();
return *this;
}
Optional& operator=(const Optional& other) {
if (other.storage_.is_null_) {
FreeIfNeeded();
return *this;
}
InitOrAssign(other.value());
return *this;
}
Optional& operator=(Optional&& other) {
if (other.storage_.is_null_) {
FreeIfNeeded();
return *this;
}
InitOrAssign(std::move(other.value()));
return *this;
}
template <class U>
typename std::enable_if<std::is_same<std::decay_t<U>, T>::value,
Optional&>::type
operator=(U&& value) {
InitOrAssign(std::forward<U>(value));
return *this;
}
constexpr const T* operator->() const {
DCHECK(!storage_.is_null_);
return &value();
}
constexpr T* operator->() {
DCHECK(!storage_.is_null_);
return &value();
}
constexpr const T& operator*() const& { return value(); }
constexpr T& operator*() & { return value(); }
constexpr const T&& operator*() const&& { return std::move(value()); }
constexpr T&& operator*() && { return std::move(value()); }
constexpr explicit operator bool() const { return !storage_.is_null_; }
constexpr bool has_value() const { return !storage_.is_null_; }
constexpr T& value() & {
DCHECK(!storage_.is_null_);
return storage_.value_;
}
constexpr const T& value() const & {
DCHECK(!storage_.is_null_);
return storage_.value_;
}
constexpr T&& value() && {
DCHECK(!storage_.is_null_);
return std::move(storage_.value_);
}
constexpr const T&& value() const && {
DCHECK(!storage_.is_null_);
return std::move(storage_.value_);
}
template <class U>
constexpr T value_or(U&& default_value) const& {
// TODO(mlamouri): add the following assert when possible:
// static_assert(std::is_copy_constructible<T>::value,
// "T must be copy constructible");
static_assert(std::is_convertible<U, T>::value,
"U must be convertible to T");
return storage_.is_null_ ? static_cast<T>(std::forward<U>(default_value))
: value();
}
template <class U>
T value_or(U&& default_value) && {
// TODO(mlamouri): add the following assert when possible:
// static_assert(std::is_move_constructible<T>::value,
// "T must be move constructible");
static_assert(std::is_convertible<U, T>::value,
"U must be convertible to T");
return storage_.is_null_ ? static_cast<T>(std::forward<U>(default_value))
: std::move(value());
}
void swap(Optional& other) {
if (storage_.is_null_ && other.storage_.is_null_)
return;
if (storage_.is_null_ != other.storage_.is_null_) {
if (storage_.is_null_) {
Init(std::move(other.storage_.value_));
other.FreeIfNeeded();
} else {
other.Init(std::move(storage_.value_));
FreeIfNeeded();
}
return;
}
DCHECK(!storage_.is_null_ && !other.storage_.is_null_);
using std::swap;
swap(**this, *other);
}
void reset() {
FreeIfNeeded();
}
template <class... Args>
void emplace(Args&&... args) {
FreeIfNeeded();
Init(std::forward<Args>(args)...);
}
private:
void Init(const T& value) {
DCHECK(storage_.is_null_);
new (&storage_.value_) T(value);
storage_.is_null_ = false;
}
void Init(T&& value) {
DCHECK(storage_.is_null_);
new (&storage_.value_) T(std::move(value));
storage_.is_null_ = false;
}
template <class... Args>
void Init(Args&&... args) {
DCHECK(storage_.is_null_);
new (&storage_.value_) T(std::forward<Args>(args)...);
storage_.is_null_ = false;
}
void InitOrAssign(const T& value) {
if (storage_.is_null_)
Init(value);
else
storage_.value_ = value;
}
void InitOrAssign(T&& value) {
if (storage_.is_null_)
Init(std::move(value));
else
storage_.value_ = std::move(value);
}
void FreeIfNeeded() {
if (storage_.is_null_)
return;
storage_.value_.~T();
storage_.is_null_ = true;
}
internal::OptionalStorage<T> storage_;
};
template <class T>
constexpr bool operator==(const Optional<T>& lhs, const Optional<T>& rhs) {
return !!lhs != !!rhs ? false : lhs == nullopt || (*lhs == *rhs);
}
template <class T>
constexpr bool operator!=(const Optional<T>& lhs, const Optional<T>& rhs) {
return !(lhs == rhs);
}
template <class T>
constexpr bool operator<(const Optional<T>& lhs, const Optional<T>& rhs) {
return rhs == nullopt ? false : (lhs == nullopt ? true : *lhs < *rhs);
}
template <class T>
constexpr bool operator<=(const Optional<T>& lhs, const Optional<T>& rhs) {
return !(rhs < lhs);
}
template <class T>
constexpr bool operator>(const Optional<T>& lhs, const Optional<T>& rhs) {
return rhs < lhs;
}
template <class T>
constexpr bool operator>=(const Optional<T>& lhs, const Optional<T>& rhs) {
return !(lhs < rhs);
}
template <class T>
constexpr bool operator==(const Optional<T>& opt, base::nullopt_t) {
return !opt;
}
template <class T>
constexpr bool operator==(base::nullopt_t, const Optional<T>& opt) {
return !opt;
}
template <class T>
constexpr bool operator!=(const Optional<T>& opt, base::nullopt_t) {
return !!opt;
}
template <class T>
constexpr bool operator!=(base::nullopt_t, const Optional<T>& opt) {
return !!opt;
}
template <class T>
constexpr bool operator<(const Optional<T>& opt, base::nullopt_t) {
return false;
}
template <class T>
constexpr bool operator<(base::nullopt_t, const Optional<T>& opt) {
return !!opt;
}
template <class T>
constexpr bool operator<=(const Optional<T>& opt, base::nullopt_t) {
return !opt;
}
template <class T>
constexpr bool operator<=(base::nullopt_t, const Optional<T>& opt) {
return true;
}
template <class T>
constexpr bool operator>(const Optional<T>& opt, base::nullopt_t) {
return !!opt;
}
template <class T>
constexpr bool operator>(base::nullopt_t, const Optional<T>& opt) {
return false;
}
template <class T>
constexpr bool operator>=(const Optional<T>& opt, base::nullopt_t) {
return true;
}
template <class T>
constexpr bool operator>=(base::nullopt_t, const Optional<T>& opt) {
return !opt;
}
template <class T>
constexpr bool operator==(const Optional<T>& opt, const T& value) {
return opt != nullopt ? *opt == value : false;
}
template <class T>
constexpr bool operator==(const T& value, const Optional<T>& opt) {
return opt == value;
}
template <class T>
constexpr bool operator!=(const Optional<T>& opt, const T& value) {
return !(opt == value);
}
template <class T>
constexpr bool operator!=(const T& value, const Optional<T>& opt) {
return !(opt == value);
}
template <class T>
constexpr bool operator<(const Optional<T>& opt, const T& value) {
return opt != nullopt ? *opt < value : true;
}
template <class T>
constexpr bool operator<(const T& value, const Optional<T>& opt) {
return opt != nullopt ? value < *opt : false;
}
template <class T>
constexpr bool operator<=(const Optional<T>& opt, const T& value) {
return !(opt > value);
}
template <class T>
constexpr bool operator<=(const T& value, const Optional<T>& opt) {
return !(value > opt);
}
template <class T>
constexpr bool operator>(const Optional<T>& opt, const T& value) {
return value < opt;
}
template <class T>
constexpr bool operator>(const T& value, const Optional<T>& opt) {
return opt < value;
}
template <class T>
constexpr bool operator>=(const Optional<T>& opt, const T& value) {
return !(opt < value);
}
template <class T>
constexpr bool operator>=(const T& value, const Optional<T>& opt) {
return !(value < opt);
}
template <class T>
constexpr Optional<typename std::decay<T>::type> make_optional(T&& value) {
return Optional<typename std::decay<T>::type>(std::forward<T>(value));
}
template <class T>
void swap(Optional<T>& lhs, Optional<T>& rhs) {
lhs.swap(rhs);
}
} // namespace base
namespace std {
template <class T>
struct hash<base::Optional<T>> {
size_t operator()(const base::Optional<T>& opt) const {
return opt == base::nullopt ? 0 : std::hash<T>()(*opt);
}
};
} // namespace std
#endif // BASE_OPTIONAL_H_