Getting Started with Doctrine ============================= This guide covers getting started with the Doctrine ORM. After working through the guide you should know: - How to install and configure Doctrine by connecting it to a database - Mapping PHP objects to database tables - Generating a database schema from PHP objects - Using the ``EntityManager`` to insert, update, delete and find objects in the database. Guide Assumptions ----------------- This guide is designed for beginners that haven't worked with Doctrine ORM before. There are some prerequesites for the tutorial that have to be installed: - PHP 5.3.3 or above - Composer Package Manager (`Install Composer `_) The code of this tutorial is `available on Github `_. .. note:: This tutorial assumes you work with **Doctrine 2.4** and above. Some of the code will not work with lower versions. What is Doctrine? ----------------- Doctrine 2 is an `object-relational mapper (ORM) `_ for PHP 5.3.3+ that provides transparent persistence for PHP objects. It uses the Data Mapper pattern at the heart, aiming for a complete separation of your domain/business logic from the persistence in a relational database management system. The benefit of Doctrine for the programmer is the ability to focus on the object-oriented business logic and worry about persistence only as a secondary problem. This doesn't mean persistence is downplayed by Doctrine 2, however it is our belief that there are considerable benefits for object-oriented programming if persistence and entities are kept separated. What are Entities? ~~~~~~~~~~~~~~~~~~ Entities are PHP Objects that can be identified over many requests by a unique identifier or primary key. These classes don't need to extend any abstract base class or interface. An entity class must not be final or contain final methods. Additionally it must not implement **clone** nor **wakeup** or :doc:`do so safely <../cookbook/implementing-wakeup-or-clone>`. An entity contains persistable properties. A persistable property is an instance variable of the entity that is saved into and retrieved from the database by Doctrine's data mapping capabilities. An Example Model: Bug Tracker ----------------------------- For this Getting Started Guide for Doctrine we will implement the Bug Tracker domain model from the `Zend\_Db\_Table `_ documentation. Reading their documentation we can extract the requirements: - A Bugs has a description, creation date, status, reporter and engineer - A bug can occur on different products (platforms) - Products have a name. - Bug Reporter and Engineers are both Users of the System. - A user can create new bugs. - The assigned engineer can close a bug. - A user can see all his reported or assigned bugs. - Bugs can be paginated through a list-view. Setup Project ------------- Create a new empty folder for this tutorial project, for example ``doctrine2-tutorial`` and create a new file ``composer.json`` with the following contents: :: { "require": { "doctrine/orm": "2.4.*", "symfony/yaml": "2.*" }, "autoload": { "psr-0": {"": "src/"} } } Install Doctrine using the Composer Dependency Management tool, by calling: :: $ composer install This will install the packages Doctrine Common, Doctrine DBAL, Doctrine ORM, Symfony YAML and Symfony Console into the `vendor` directory. The Symfony dependencies are not required by Doctrine but will be used in this tutorial. Add the following directories: :: doctrine2-tutorial |-- config | |-- xml | `-- yaml `-- src Obtaining the EntityManager --------------------------- Doctrine's public interface is the EntityManager, it provides the access point to the complete lifecycle management of your entities and transforms entities from and back to persistence. You have to configure and create it to use your entities with Doctrine 2. I will show the configuration steps and then discuss them step by step: .. code-block:: php 'pdo_sqlite', 'path' => __DIR__ . '/db.sqlite', ); // obtaining the entity manager $entityManager = EntityManager::create($conn, $config); The first require statement sets up the autoloading capabilities of Doctrine using the Composer autoload. The second block consists of the instantiation of the ORM ``Configuration`` object using the Setup helper. It assumes a bunch of defaults that you don't have to bother about for now. You can read up on the configuration details in the :doc:`reference chapter on configuration <../reference/configuration>`. The third block shows the configuration options required to connect to a database, in my case a file-based sqlite database. All the configuration options for all the shipped drivers are given in the `DBAL Configuration section of the manual `_. The last block shows how the ``EntityManager`` is obtained from a factory method. Generating the Database Schema ------------------------------ Now that we have defined the Metadata Mappings and bootstrapped the EntityManager we want to generate the relational database schema from it. Doctrine has a Command-Line-Interface that allows you to access the SchemaTool, a component that generates the required tables to work with the metadata. For the command-line tool to work a cli-config.php file has to be present in the project root directory, where you will execute the doctrine command. Its a fairly simple file: .. code-block:: php id; } public function getName() { return $this->name; } public function setName($name) { $this->name = $name; } } Note how the properties have getter and setter methods defined except ``$id``. To access data from entities Doctrine 2 uses the Reflection API, so it is possible for Doctrine to access the value of ``$id``. You don't have to take Doctrine into account when designing access to the state of your objects. The next step for persistence with Doctrine is to describe the structure of the ``Product`` entity to Doctrine using a metadata language. The metadata language describes how entities, their properties and references should be persisted and what constraints should be applied to them. Metadata for entities are configured using a XML, YAML or Docblock Annotations. This Getting Started Guide will show the mappings for all Mapping Drivers. References in the text will be made to the XML mapping. .. configuration-block:: .. code-block:: php .. code-block:: yaml # config/yaml/Product.dcm.yml Product: type: entity table: products id: id: type: integer generator: strategy: AUTO fields: name: type: string The top-level ``entity`` definition tag specifies information about the class and table-name. The primitive type ``Product::$name`` is defined as ``field`` attributes. The Id property is defined with the ``id`` tag. The id has a ``generator`` tag nested inside which defines that the primary key generation mechanism automatically uses the database platforms native id generation strategy, for example AUTO INCREMENT in the case of MySql or Sequences in the case of PostgreSql and Oracle. You have to update the database now, because we have a first Entity now: :: $ php vendor/bin/doctrine orm:schema-tool:update --force --dump-sql Specifying both flags ``--force`` and ``-dump-sql`` prints and executes the DDL statements. Now create a new script that will insert products into the database: .. code-block:: php setName($newProductName); $entityManager->persist($product); $entityManager->flush(); echo "Created Product with ID " . $product->getId() . "\n"; Call this script from the command line to see how new products are created: :: $ php create_product.php ORM $ php create_product.php DBAL What is happening here? Using the ``Product`` is pretty standard OOP. The interesting bits are the use of the ``EntityManager`` service. To notify the EntityManager that a new entity should be inserted into the database you have to call ``persist()``. To intiate a transaction to actually perform the insertion, You have to explicitly call ``flush()`` on the ``EntityManager``. This distinction between persist and flush is allows to aggregate all writes (INSERT, UPDATE, DELETE) into one single transaction, which is executed when flush is called. Using this approach the write-performance is significantly better than in a scenario where updates are done for each entity in isolation. Doctrine follows the UnitOfWork pattern which additionally detects all entities that were fetched and have changed during the request. You don't have to keep track of entities yourself, when Doctrine already knowns about them. As a next step we want to fetch a list of all the products. Let's create a new script for this: .. code-block:: php getRepository('Product'); $products = $productRepository->findAll(); foreach ($products as $product) { echo sprintf("-%s\n", $product->getName()); } The ``EntityManager#getRepository()`` method can create a finder object (called repository) for every entity. It is provided by Doctrine and contains some finder methods such as ``findAll()``. Let's continue with displaying the name of a product based on its ID: .. code-block:: php require_once "bootstrap.php"; $id = $argv[1]; $product = $entityManager->find('Product', $id); if ($product === null) { echo "No product found.\n"; exit(1); } echo sprintf("-%s\n", $product->getName()); Updating a product name demonstrates the functionality UnitOfWork of pattern discussed before. We only need to find a product entity and all changes to its properties are written to the database: .. code-block:: php require_once "bootstrap.php"; $id = $argv[1]; $newName = $argv[2]; $product = $entityManager->find('Product', $id); if ($product === null) { echo "Product $id does not exist.\n"; exit(1); } $product->setName($newName); $entityManager->flush(); After calling this script on one of the existing products, you can verify the product name changed by calling the ``show_product.php`` script. Adding Bug and User Entities ---------------------------- We continue with the bug tracker domain, by creating the missing classes ``Bug`` and ``User`` and putting them into ``src/Bug.php`` and ``src/User.php`` respectively. .. code-block:: php id; } public function getDescription() { return $this->description; } public function setDescription($description) { $this->description = $description; } public function setCreated(DateTime $created) { $this->created = $created; } public function getCreated() { return $this->created; } public function setStatus($status) { $this->status = $status; } public function getStatus() { return $this->status; } } .. code-block:: php id; } public function getName() { return $this->name; } public function setName($name) { $this->name = $name; } } All of the properties discussed so far are simple string and integer values, for example the id fields of the entities, their names, description, status and change dates. With just the scalar values this model cannot describe the dynamics that we want. We want to model references between entities. References between objects are foreign keys in the database. You never have to work with the foreign keys directly, only with objects that represent the foreign key through their own identity. For every foreign key you either have a Doctrine ManyToOne or OneToOne association. On the inverse sides of these foreign keys you can have OneToMany associations. Obviously you can have ManyToMany associations that connect two tables with each other through a join table with two foreign keys. Now that you know the basics about references in Doctrine, we can extend the domain model to match the requirements: .. code-block:: php products = new ArrayCollection(); } } .. code-block:: php reportedBugs = new ArrayCollection(); $this->assignedBugs = new ArrayCollection(); } } Whenever an entity is recreated from the database, an Collection implementation of the type Doctrine is injected into your entity instead of an array. Compared to the ArrayCollection this implementation helps the Doctrine ORM understand the changes that have happened to the collection which are noteworthy for persistence. .. warning:: Lazy load proxies always contain an instance of Doctrine's EntityManager and all its dependencies. Therefore a var\_dump() will possibly dump a very large recursive structure which is impossible to render and read. You have to use ``Doctrine\Common\Util\Debug::dump()`` to restrict the dumping to a human readable level. Additionally you should be aware that dumping the EntityManager to a Browser may take several minutes, and the Debug::dump() method just ignores any occurrences of it in Proxy instances. Because we only work with collections for the references we must be careful to implement a bidirectional reference in the domain model. The concept of owning or inverse side of a relation is central to this notion and should always be kept in mind. The following assumptions are made about relations and have to be followed to be able to work with Doctrine 2. These assumptions are not unique to Doctrine 2 but are best practices in handling database relations and Object-Relational Mapping. - Changes to Collections are saved or updated, when the entity on the *owning* side of the collection is saved or updated. - Saving an Entity at the inverse side of a relation never triggers a persist operation to changes to the collection. - In a one-to-one relation the entity holding the foreign key of the related entity on its own database table is *always* the owning side of the relation. - In a many-to-many relation, both sides can be the owning side of the relation. However in a bi-directional many-to-many relation only one is allowed to be. - In a many-to-one relation the Many-side is the owning side by default, because it holds the foreign key. - The OneToMany side of a relation is inverse by default, since the foreign key is saved on the Many side. A OneToMany relation can only be the owning side, if its implemented using a ManyToMany relation with join table and restricting the one side to allow only UNIQUE values per database constraint. .. note:: Consistency of bi-directional references on the inverse side of a relation have to be managed in userland application code. Doctrine cannot magically update your collections to be consistent. In the case of Users and Bugs we have references back and forth to the assigned and reported bugs from a user, making this relation bi-directional. We have to change the code to ensure consistency of the bi-directional reference: .. code-block:: php assignedToBug($this); $this->engineer = $engineer; } public function setReporter($reporter) { $reporter->addReportedBug($this); $this->reporter = $reporter; } public function getEngineer() { return $this->engineer; } public function getReporter() { return $this->reporter; } } .. code-block:: php reportedBugs[] = $bug; } public function assignedToBug($bug) { $this->assignedBugs[] = $bug; } } I chose to name the inverse methods in past-tense, which should indicate that the actual assigning has already taken place and the methods are only used for ensuring consistency of the references. This approach is my personal preference, you can choose whatever method to make this work. You can see from ``User::addReportedBug()`` and ``User::assignedToBug()`` that using this method in userland alone would not add the Bug to the collection of the owning side in ``Bug::$reporter`` or ``Bug::$engineer``. Using these methods and calling Doctrine for persistence would not update the collections representation in the database. Only using ``Bug::setEngineer()`` or ``Bug::setReporter()`` correctly saves the relation information. We also set both collection instance variables to protected, however with PHP 5.3's new features Doctrine is still able to use Reflection to set and get values from protected and private properties. The ``Bug::$reporter`` and ``Bug::$engineer`` properties are Many-To-One relations, which point to a User. In a normalized relational model the foreign key is saved on the Bug's table, hence in our object-relation model the Bug is at the owning side of the relation. You should always make sure that the use-cases of your domain model should drive which side is an inverse or owning one in your Doctrine mapping. In our example, whenever a new bug is saved or an engineer is assigned to the bug, we don't want to update the User to persist the reference, but the Bug. This is the case with the Bug being at the owning side of the relation. Bugs reference Products by an uni-directional ManyToMany relation in the database that points from Bugs to Products. .. code-block:: php products[] = $product; } public function getProducts() { return $this->products; } } We are now finished with the domain model given the requirements. Now we continue adding metadata mappings for the ``User`` and ``Bug`` as we did for the ``Product`` before: .. configuration-block:: .. code-block:: php .. code-block:: yaml # config/yaml/Bug.dcm.yml Bug: type: entity table: bugs id: id: type: integer generator: strategy: AUTO fields: description: type: text created: type: datetime status: type: string manyToOne: reporter: targetEntity: User inversedBy: reportedBugs engineer: targetEntity: User inversedBy: assignedBugs manyToMany: products: targetEntity: Product Here we have the entity, id and primitive type definitions. The column names are used from the Zend\_Db\_Table examples and have different names than the properties on the Bug class. Additionally for the "created" field it is specified that it is of the Type "DATETIME", which translates the YYYY-mm-dd HH:mm:ss Database format into a PHP DateTime instance and back. After the field definitions the two qualified references to the user entity are defined. They are created by the ``many-to-one`` tag. The class name of the related entity has to be specified with the ``target-entity`` attribute, which is enough information for the database mapper to access the foreign-table. Since ``reporter`` and ``engineer`` are on the owning side of a bi-directional relation we also have to specify the ``inversed-by`` attribute. They have to point to the field names on the inverse side of the relationship. We will see in the next example that the ``inversed-by`` attribute has a counterpart ``mapped-by`` which makes that the inverse side. The last missing property is the ``Bug::$products`` collection. It holds all products where the specific bug is occurring in. Again you have to define the ``target-entity`` and ``field`` attributes on the ``many-to-many`` tag. Furthermore you have to specify the details of the many-to-many join-table and its foreign key columns. The definition is rather complex, however relying on the XML auto-completion I got it working easily, although I forget the schema details all the time. The last missing definition is that of the User entity: .. configuration-block:: .. code-block:: php .. code-block:: yaml # config/xml/User.dcm.yml User: type: entity table: users id: id: type: integer generator: strategy: AUTO fields: name: type: string oneToMany: reportedBugs: targetEntity: Bug mappedBy: reporter assignedBugs: targetEntity: Bug mappedBy: engineer Here are some new things to mention about the ``one-to-many`` tags. Remember that we discussed about the inverse and owning side. Now both reportedBugs and assignedBugs are inverse relations, which means the join details have already been defined on the owning side. Therefore we only have to specify the property on the Bug class that holds the owning sides. This example has a fair overview of the most basic features of the metadata definition language. Implementing more Requirements ------------------------------ For starters we need a create user entities: .. code-block:: php setName($newUsername); $entityManager->persist($user); $entityManager->flush(); echo "Created User with ID " . $user->getId() . "\n"; Now call: :: $ php create_user.php beberlei We now have the data to create a bug and the code for this scenario may look like this: .. code-block:: php find("User", $theReporterId); $engineer = $entityManager->find("User", $theDefaultEngineerId); if (!$reporter || !$engineer) { echo "No reporter and/or engineer found for the input.\n"; exit(1); } $bug = new Bug(); $bug->setDescription("Something does not work!"); $bug->setCreated(new DateTime("now")); $bug->setStatus("OPEN"); foreach ($productIds AS $productId) { $product = $entityManager->find("Product", $productId); $bug->assignToProduct($product); } $bug->setReporter($reporter); $bug->setEngineer($engineer); $entityManager->persist($bug); $entityManager->flush(); echo "Your new Bug Id: ".$bug->getId()."\n"; Since we only have one user and product, probably with the ID of 1, we can call this script with: :: php create_bug.php 1 1 1 This is the first contact with the read API of the EntityManager, showing that a call to ``EntityManager#find($name, $id)`` returns a single instance of an entity queried by primary key. Besides this we see the persist + flush pattern again to save the Bug into the database. See how simple relating Bug, Reporter, Engineer and Products is done by using the discussed methods in the "A first prototype" section. The UnitOfWork will detect this relations when flush is called and relate them in the database appropriately. Queries for Application Use-Cases --------------------------------- List of Bugs ~~~~~~~~~~~~ Using the previous examples we can fill up the database quite a bit, however we now need to discuss how to query the underlying mapper for the required view representations. When opening the application, bugs can be paginated through a list-view, which is the first read-only use-case: .. code-block:: php createQuery($dql); $query->setMaxResults(30); $bugs = $query->getResult(); foreach($bugs AS $bug) { echo $bug->getDescription()." - ".$bug->getCreated()->format('d.m.Y')."\n"; echo " Reported by: ".$bug->getReporter()->getName()."\n"; echo " Assigned to: ".$bug->getEngineer()->getName()."\n"; foreach($bug->getProducts() AS $product) { echo " Platform: ".$product->getName()."\n"; } echo "\n"; } The DQL Query in this example fetches the 30 most recent bugs with their respective engineer and reporter in one single SQL statement. The console output of this script is then: :: Something does not work! - 02.04.2010 Reported by: beberlei Assigned to: beberlei Platform: My Product .. note:: **Dql is not Sql** You may wonder why we start writing SQL at the beginning of this use-case. Don't we use an ORM to get rid of all the endless hand-writing of SQL? Doctrine introduces DQL which is best described as **object-query-language** and is a dialect of `OQL `_ and similar to `HQL `_ or `JPQL `_. It does not know the concept of columns and tables, but only those of Entity-Class and property. Using the Metadata we defined before it allows for very short distinctive and powerful queries. An important reason why DQL is favourable to the Query API of most ORMs is its similarity to SQL. The DQL language allows query constructs that most ORMs don't, GROUP BY even with HAVING, Sub-selects, Fetch-Joins of nested classes, mixed results with entities and scalar data such as COUNT() results and much more. Using DQL you should seldom come to the point where you want to throw your ORM into the dumpster, because it doesn't support some the more powerful SQL concepts. Besides handwriting DQL you can however also use the ``QueryBuilder`` retrieved by calling ``$entityManager->createQueryBuilder()`` which is a Query Object around the DQL language. As a last resort you can however also use Native SQL and a description of the result set to retrieve entities from the database. DQL boils down to a Native SQL statement and a ``ResultSetMapping`` instance itself. Using Native SQL you could even use stored procedures for data retrieval, or make use of advanced non-portable database queries like PostgreSql's recursive queries. Array Hydration of the Bug List ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ In the previous use-case we retrieved the result as their respective object instances. We are not limited to retrieving objects only from Doctrine however. For a simple list view like the previous one we only need read access to our entities and can switch the hydration from objects to simple PHP arrays instead. This can obviously yield considerable performance benefits for read-only requests. Implementing the same list view as before using array hydration we can rewrite our code: .. code-block:: php createQuery($dql); $bugs = $query->getArrayResult(); foreach ($bugs AS $bug) { echo $bug['description'] . " - " . $bug['created']->format('d.m.Y')."\n"; echo " Reported by: ".$bug['reporter']['name']."\n"; echo " Assigned to: ".$bug['engineer']['name']."\n"; foreach($bug['products'] AS $product) { echo " Platform: ".$product['name']."\n"; } echo "\n"; } There is one significant difference in the DQL query however, we have to add an additional fetch-join for the products connected to a bug. The resulting SQL query for this single select statement is pretty large, however still more efficient to retrieve compared to hydrating objects. Find by Primary Key ~~~~~~~~~~~~~~~~~~~ The next Use-Case is displaying a Bug by primary key. This could be done using DQL as in the previous example with a where clause, however there is a convenience method on the ``EntityManager`` that handles loading by primary key, which we have already seen in the write scenarios: .. code-block:: php find("Bug", (int)$theBugId); echo "Bug: ".$bug->getDescription()."\n"; echo "Engineer: ".$bug->getEngineer()->getName()."\n"; The output of the engineers name is fetched from the database! What is happening? Since we only retrieved the bug by primary key both the engineer and reporter are not immediately loaded from the database but are replaced by LazyLoading proxies. These proxies will load behind the scenes, when the first method is called on them. Sample code of this proxy generated code can be found in the specified Proxy Directory, it looks like: .. code-block:: php _load(); return parent::addReportedBug($bug); } public function assignedToBug($bug) { $this->_load(); return parent::assignedToBug($bug); } } See how upon each method call the proxy is lazily loaded from the database? The call prints: :: $ php show_bug.php 1 Bug: Something does not work! Engineer: beberlei Dashboard of the User --------------------- For the next use-case we want to retrieve the dashboard view, a list of all open bugs the user reported or was assigned to. This will be achieved using DQL again, this time with some WHERE clauses and usage of bound parameters: .. code-block:: php createQuery($dql) ->setParameter(1, $theUserId) ->setMaxResults(15) ->getResult(); echo "You have created or assigned to " . count($myBugs) . " open bugs:\n\n"; foreach ($myBugs AS $bug) { echo $bug->getId() . " - " . $bug->getDescription()."\n"; } Number of Bugs -------------- Until now we only retrieved entities or their array representation. Doctrine also supports the retrieval of non-entities through DQL. These values are called "scalar result values" and may even be aggregate values using COUNT, SUM, MIN, MAX or AVG functions. We will need this knowledge to retrieve the number of open bugs grouped by product: .. code-block:: php createQuery($dql)->getScalarResult(); foreach($productBugs as $productBug) { echo $productBug['name']." has " . $productBug['openBugs'] . " open bugs!\n"; } Updating Entities ----------------- There is a single use-case missing from the requirements, Engineers should be able to close a bug. This looks like: .. code-block:: php status = "CLOSE"; } } .. code-block:: php find("Bug", (int)$theBugId); $bug->close(); $entityManager->flush(); When retrieving the Bug from the database it is inserted into the IdentityMap inside the UnitOfWork of Doctrine. This means your Bug with exactly this id can only exist once during the whole request no matter how often you call ``EntityManager#find()``. It even detects entities that are hydrated using DQL and are already present in the Identity Map. When flush is called the EntityManager loops over all the entities in the identity map and performs a comparison between the values originally retrieved from the database and those values the entity currently has. If at least one of these properties is different the entity is scheduled for an UPDATE against the database. Only the changed columns are updated, which offers a pretty good performance improvement compared to updating all the properties. Entity Repositories ------------------- For now we have not discussed how to separate the Doctrine query logic from your model. In Doctrine 1 there was the concept of ``Doctrine_Table`` instances for this separation. The similar concept in Doctrine2 is called Entity Repositories, integrating the `repository pattern `_ at the heart of Doctrine. Every Entity uses a default repository by default and offers a bunch of convenience methods that you can use to query for instances of that Entity. Take for example our Product entity. If we wanted to Query by name, we can use: .. code-block:: php getRepository('Product') ->findOneBy(array('name' => $productName)); The method ``findOneBy()`` takes an array of fields or association keys and the values to match against. If you want to find all entities matching a condition you can use ``findBy()``, for example querying for all closed bugs: .. code-block:: php getRepository('Bug') ->findBy(array('status' => 'CLOSED')); foreach ($bugs AS $bug) { // do stuff } Compared to DQL these query methods are falling short of functionality very fast. Doctrine offers you a convenient way to extend the functionalities of the default ``EntityRepository`` and put all the specialized DQL query logic on it. For this you have to create a subclass of ``Doctrine\ORM\EntityRepository``, in our case a ``BugRepository`` and group all the previously discussed query functionality in it: .. code-block:: php getEntityManager()->createQuery($dql); $query->setMaxResults($number); return $query->getResult(); } public function getRecentBugsArray($number = 30) { $dql = "SELECT b, e, r, p FROM Bug b JOIN b.engineer e ". "JOIN b.reporter r JOIN b.products p ORDER BY b.created DESC"; $query = $this->getEntityManager()->createQuery($dql); $query->setMaxResults($number); return $query->getArrayResult(); } public function getUsersBugs($userId, $number = 15) { $dql = "SELECT b, e, r FROM Bug b JOIN b.engineer e JOIN b.reporter r ". "WHERE b.status = 'OPEN' AND e.id = ?1 OR r.id = ?1 ORDER BY b.created DESC"; return $this->getEntityManager()->createQuery($dql) ->setParameter(1, $userId) ->setMaxResults($number) ->getResult(); } public function getOpenBugsByProduct() { $dql = "SELECT p.id, p.name, count(b.id) AS openBugs FROM Bug b ". "JOIN b.products p WHERE b.status = 'OPEN' GROUP BY p.id"; return $this->getEntityManager()->createQuery($dql)->getScalarResult(); } } Don't forget to add a `require_once` call for this class to the bootstrap.php To be able to use this query logic through ``$this->getEntityManager()->getRepository('Bug')`` we have to adjust the metadata slightly. .. configuration-block:: .. code-block:: php .. code-block:: yaml Bug: type: entity repositoryClass: BugRepository Now we can remove our query logic in all the places and instead use them through the EntityRepository. As an example here is the code of the first use case "List of Bugs": .. code-block:: php getRepository('Bug')->getRecentBugs(); foreach($bugs AS $bug) { echo $bug->getDescription()." - ".$bug->getCreated()->format('d.m.Y')."\n"; echo " Reported by: ".$bug->getReporter()->getName()."\n"; echo " Assigned to: ".$bug->getEngineer()->getName()."\n"; foreach($bug->getProducts() AS $product) { echo " Platform: ".$product->getName()."\n"; } echo "\n"; } Using EntityRepositories you can avoid coupling your model with specific query logic. You can also re-use query logic easily throughout your application. Conclusion ---------- This tutorial is over here, I hope you had fun. Additional content will be added to this tutorial incrementally, topics will include: - More on Association Mappings - Lifecycle Events triggered in the UnitOfWork - Ordering of Collections Additional details on all the topics discussed here can be found in the respective manual chapters.